OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25766–25773

A new artificial material approach for flat THz frequency lenses

Giorgio Savini, Peter A.R. Ade, and Jin Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25766-25773 (2012)
http://dx.doi.org/10.1364/OE.20.025766


View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stacked layers of metal meshes embedded in a dielectric substrate are routinely used for providing spectral selection at THz frequencies. Recent work has shown that particular geometries allow the refractive index to be tuned to produce practical artificial materials. Here we show that by spatially grading in the plane of the mesh we can manufacture a Graded Index (GrIn) thin flat lens optimized for use at THz frequencies. Measurements on a prototype lens show we are able to obtain the parabolic profile of a Woods type lens which is dependent only on the mesh parameters. This technique could realize other exotic optical devices.

© 2012 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.3630) Optical design and fabrication : Lenses
(260.3090) Physical optics : Infrared, far
(350.2460) Other areas of optics : Filters, interference
(160.1245) Materials : Artificially engineered materials
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Metamaterials

History
Original Manuscript: September 11, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: October 23, 2012
Published: October 30, 2012

Citation
Giorgio Savini, Peter A.R. Ade, and Jin Zhang, "A new artificial material approach for flat THz frequency lenses," Opt. Express 20, 25766-25773 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, Physical Optics 71 (The MacMillan Company, 1905)
  2. R. Ulrich, “Effective low-pass filters for far infrared frequencies,” Infrared Phys.7(2), 65–74 (1967). [CrossRef]
  3. K. Moller and R. McKnight, “Measurements on transmission-filter gratings in the far infrared,” J. Opt. Soc. Am.55(9), 1075–1078 (1965). [CrossRef]
  4. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys.7(1), 37–55 (1967). [CrossRef]
  5. N. Marcuvitz, Waveguide Handbook,M.I.T. Radiation Laboratory Series (McGraw Hill, 1951).
  6. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory21(1), 1–6 (1973). [CrossRef]
  7. S. Lee, G. Zarrillo, and C.-L. Law, “Simple formulas for transmission through periodic metal grids or plates,” IEEE Trans. Antenn. Propag.30(5), 904–909 (1982). [CrossRef]
  8. S. Tretyakov, Analytical modeling in Applied Electromagnetics (Artech House Publishers, 2003)
  9. P. A. R. Ade, Astronomical and Atmospheric Studies at Far Infrared Wavelengths (University of London, 1973).
  10. T. Timusk and P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt.20(8), 1355–1360 (1981). [CrossRef] [PubMed]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  14. J. Zhang, P. A. R. Ade, P. Mauskopf, L. Moncelsi, G. Savini, and N. Whitehouse, “New artificial dielectric metamaterial and its application as a terahertz antireflection coating,” Appl. Opt.48(35), 6635–6642 (2009). [CrossRef] [PubMed]
  15. C. Tucker and P. A. R. Ade, “Thermal filtering for large aperture cryogenic detector arrays,” Proc. SPIE6275, 62750T (2006). [CrossRef]
  16. E. Marchand, Gradient Index Optics (New York Academic Press, New York, 1978).
  17. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express18(26), 27748–27757 (2010). [CrossRef] [PubMed]
  18. C. Gomez-Reino, M. Perez, and C. Bao, Gradient Index Optics (Springer, 2010).
  19. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt.19(7), 1035–1038 (1980). [CrossRef] [PubMed]
  20. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  21. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  22. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010). [CrossRef] [PubMed]
  23. D. J. Fischer, C. J. Harkrider, and D. T. Moore, “Design and manufacture of a gradient-index axicon,” Appl. Opt.39(16), 2687–2694 (2000). [CrossRef] [PubMed]
  24. HFSS, “High Frequency Structural Simulator”, ANSYS corp., www.ansys.com .
  25. B. Born and W. Wolf, Principles of Optics, 6th Ed. (Cambridge University Press, 1980)
  26. P. A. R. Ade, G. Pisano, S. Weaver, and C. Tucker, “A review of metal mesh filters,” Proc. SPIE6275, 62750U (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited