OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25790–25797

Slow light in dielectric composite materials of metal nanoparticles

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25790-25797 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1041 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method for slowing down light pulses by using composites doped with metal nanoparticles. The underlying mechanism is related to the saturable absorption near the plasmon resonance in a pump-probe regime, leading to strong dispersion of the probe refractive index and significantly reduced group velocities. By using a non-collinear scheme, we predict a total fractional delay of 43. This scheme promises simple and compact slow-light on-chip devices with tunable delay and THz bandwidth.

© 2012 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 21, 2012
Revised Manuscript: October 10, 2012
Manuscript Accepted: October 10, 2012
Published: October 31, 2012

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann, "Slow light in dielectric composite materials of metal nanoparticles," Opt. Express 20, 25790-25797 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Khurgin and R. S. Tucker ed., Slow light: science and applications (CRC Press, Boca Raton, 2008). [CrossRef]
  2. R.W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326, 1074–1077 (2009). [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999). [CrossRef]
  4. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon.4, 776–779 (2010). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003). [CrossRef] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003). [CrossRef] [PubMed]
  7. E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett.107, 013901 (2011). [CrossRef] [PubMed]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005). [CrossRef] [PubMed]
  9. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13, 6092–6098 (2005). [CrossRef] [PubMed]
  10. T. Baba, “Slow light in photonic crystals,” Nature Photon.2, 465–473 (2008). [CrossRef]
  11. R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express18, 16309–16319 (2010). [CrossRef] [PubMed]
  12. J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys.2, 775–780 (2006). [CrossRef]
  13. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett.98, 153601 (2007). [CrossRef] [PubMed]
  14. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007). [CrossRef]
  15. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express14, 2317–2322 (2006). [CrossRef] [PubMed]
  16. R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36, 949–960 (2004). [CrossRef]
  17. Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann, “Saturable absorption in composites doped with metal nanoparticles,” Opt. Express18, 21918–21925 (2010). [CrossRef] [PubMed]
  18. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev.2, 136–159 (2008). [CrossRef]
  19. K.-H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Lett.37, 1490–1492 (2012). [CrossRef] [PubMed]
  20. J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys.251, 181–203 (2000). [CrossRef]
  21. R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74, 033801 (2006). [CrossRef]
  22. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A3, 385–420 (1904).
  23. E.D. Palik ed., Handbook of optical constants of solids (Academic, Orlando, 1985).
  24. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B22, 2444–2449 (2005). [CrossRef]
  25. E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and Cid B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express18, 21636–21344 (2010). [CrossRef] [PubMed]
  26. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett.32, 906–908 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited