OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25817–25825

Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm

Yanfei Wang, Xiaogang Zhang, Dongying Wang, Zhiming Tao, Wei Zhuang, and Jingbiao Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25817-25825 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2831 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a Cs FADOF (Faraday anomalous dispersion optical filter) with a single transmission peak resonant with the 6S1/2, F = 4 → 7P3/2, F′ = 3, 4, 5 transition at 455 nm. The filter achieves a single peak transmission of 86%. With the technique of saturated absorption spectra, we obtain the bandwidth of the single peak, which is 1.5 GHz. While most of other FADOFs operate at frequencies far from absorption, the filter we have realized can provide light exactly resonant with atomic transitions with a high transmission. We also find that, at a particular temperature, we can achieve a single transmission peak rather than many peaks far from absorption by changing the strength of magnetic field. This technique can also be applied to other alkali atoms.

© 2012 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(140.2020) Lasers and laser optics : Diode lasers
(230.2240) Optical devices : Faraday effect
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Optical Devices

Original Manuscript: August 30, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 23, 2012
Published: November 1, 2012

Yanfei Wang, Xiaogang Zhang, Dongying Wang, Zhiming Tao, Wei Zhuang, and Jingbiao Chen, "Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm," Opt. Express 20, 25817-25825 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995). [CrossRef]
  2. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett.27, 1932–1934 (2002). [CrossRef]
  3. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett.30, 890–892 (2005). [CrossRef] [PubMed]
  4. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010). [CrossRef]
  5. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006). [CrossRef]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express15, 7940–7949 (2007). [CrossRef] [PubMed]
  7. F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express16, 18145–18151 (2008). [CrossRef] [PubMed]
  8. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011). [CrossRef] [PubMed]
  9. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006). [CrossRef]
  10. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991). [CrossRef] [PubMed]
  11. J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett.17, 1388–1390 (1992). [CrossRef] [PubMed]
  12. B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992). [CrossRef]
  13. X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994). [CrossRef]
  14. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012). [CrossRef] [PubMed]
  15. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991). [CrossRef] [PubMed]
  16. Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993). [CrossRef]
  17. M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996). [CrossRef]
  18. Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011). [CrossRef] [PubMed]
  19. X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012). [CrossRef] [PubMed]
  20. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012). [CrossRef]
  21. B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992). [CrossRef]
  22. E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B13, 1849–1858 (1996). [CrossRef]
  23. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001). [CrossRef]
  24. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001). [CrossRef]
  25. S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B26, 659–670 (2009). [CrossRef]
  26. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993). [CrossRef] [PubMed]
  27. Y. C. Chan and J. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron.29, 2379–2384 (1993). [CrossRef]
  28. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett.20, 1427–1429 (1995). [CrossRef] [PubMed]
  29. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett.27, 500–502 (2002). [CrossRef]
  30. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett.34, 1012–1014 (2009). [CrossRef] [PubMed]
  31. S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012). [CrossRef]
  32. J. T. Schultz, S. Abend, D. Döring, J. E. Debs, P. A. Altin, J. D. White, N. P. Robins, and J. D. Close, “Coherent 455 nm beam production in a cesium vapor,” Opt. Lett.34, 2321–2323 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited