OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25834–25842

Coupled and uncoupled dipole models of nonlinear scattering

Naveen K. Balla, Elijah Y. S. Yew, Colin J. R. Sheppard, and Peter T. C. So  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25834-25842 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dipole models are one of the simplest numerical models to understand nonlinear scattering. Existing dipole model for second harmonic generation, third harmonic generation and coherent anti-Stokes Raman scattering assume that the dipoles which make up a scatterer do not interact with one another. Thus, this dipole model can be called the uncoupled dipole model. This dipole model is not sufficient to describe the effects of refractive index of a scatterer or to describe scattering at the edges of a scatterer. Taking into account the interaction between dipoles overcomes these short comings of the uncoupled dipole model. Coupled dipole model has been primarily used for linear scattering studies but it can be extended to predict nonlinear scattering. The coupled and uncoupled dipole models have been compared to highlight their differences. Results of nonlinear scattering predicted by coupled dipole model agree well with previously reported experimental results.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

Original Manuscript: July 24, 2012
Revised Manuscript: September 10, 2012
Manuscript Accepted: September 21, 2012
Published: November 1, 2012

Naveen K. Balla, Elijah Y. S. Yew, Colin J. R. Sheppard, and Peter T. C. So, "Coupled and uncoupled dipole models of nonlinear scattering," Opt. Express 20, 25834-25842 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron.10(5), 435–439 (1978). [CrossRef]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  3. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999). [CrossRef] [PubMed]
  4. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  5. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006). [CrossRef] [PubMed]
  6. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002). [CrossRef] [PubMed]
  7. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003). [CrossRef] [PubMed]
  8. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  9. J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express3(9), 315–324 (1998). [CrossRef] [PubMed]
  10. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express5(8), 169–175 (1999). [CrossRef] [PubMed]
  11. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent Anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83(1), 502–509 (2002). [CrossRef] [PubMed]
  12. H. A. Rinia, K. N. J. Burger, M. Bonn, and M. Müller, “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J.95(10), 4908–4914 (2008). [CrossRef] [PubMed]
  13. J. Lin, H. Wang, W. Zheng, F. Lu, C. Sheppard, and Z. Huang, “Numerical study of effects of light polarization, scatterer sizes and orientations on near-field coherent anti-Stokes Raman scattering microscopy,” Opt. Express17(4), 2423–2434 (2009). [CrossRef] [PubMed]
  14. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008). [CrossRef]
  15. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011). [CrossRef] [PubMed]
  16. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B17(10), 1685–1694 (2000). [CrossRef]
  17. J.-X. Cheng and X. S. Xie, “Green's function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B19(7), 1604–1610 (2002). [CrossRef]
  18. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B19(6), 1363–1375 (2002). [CrossRef]
  19. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973). [CrossRef]
  20. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988). [CrossRef]
  21. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett.16(15), 1198–1200 (1991). [CrossRef] [PubMed]
  22. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11(4), 1491–1499 (1994). [CrossRef]
  23. N. K. Balla, P. T. C. So, and C. J. R. Sheppard, “Second harmonic scattering from small particles using Discrete Dipole Approximation,” Opt. Express18(21), 21603–21611 (2010). [CrossRef] [PubMed]
  24. E. Yew and C. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express14(3), 1167–1174 (2006). [CrossRef] [PubMed]
  25. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  26. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of X(2)/X(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J.86(6), 3914–3922 (2004). [CrossRef] [PubMed]
  27. K. Takeda, Y. Ito, and C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol.3(1), 27–32 (1992). [CrossRef]
  28. R. W. Boyd, “The Nonlinear Optical Susceptibility,” in Nonlinear Optics, 3rd ed. (Academic Press, 2008), pp. 1–67.
  29. D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett.30(16), 2134–2136 (2005). [CrossRef] [PubMed]
  30. C. Liu, Z. Huang, F. Lu, W. Zheng, D. W. Hutmacher, and C. Sheppard, “Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging,” Opt. Express15(7), 4118–4131 (2007). [CrossRef] [PubMed]
  31. J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108(3), 827–840 (2004). [CrossRef]
  32. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.45(27), 7005–7011 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited