OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25935–25947

Range determination for generating point clouds from airborne small footprint LiDAR waveforms

Yuchu Qin, Tuong Thuy Vu, Yifang Ban, and Zheng Niu  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25935-25947 (2012)
http://dx.doi.org/10.1364/OE.20.025935


View Full Text Article

Enhanced HTML    Acrobat PDF (2478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a range determination approach for generating point clouds from small footprint LiDAR waveforms. Waveform deformation over complex terrain area is simulated using convolution. Drift of the peak center position is analyzed to identify the first echo returned by the illuminated objects in the LiDAR footprint. An approximate start point of peak in the waveform is estimated and adopted as the indicator of range calculation; range correction method is proposed to correct pulse widening over complex terrain surface. The experiment was carried out on small footprint LiDAR waveform data acquired by RIEGL LMS-Q560. The results suggest that the proposed approach generates more points than standard commercial products; based on field measurements, a comparative analysis between the point clouds generated by the proposed approach and the commercial software GeocodeWF indicates that: 1). the proposed approach obtained more accurate tree heights; 2). smooth surface can be achieved with low standard deviation. In summary, the proposed approach provides a satisfactory solution for range determination in estimating 3D coordinate values of point clouds, especially for correcting range information of waveforms containing deformed peaks.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 19, 2012
Published: November 1, 2012

Citation
Yuchu Qin, Tuong Thuy Vu, Yifang Ban, and Zheng Niu, "Range determination for generating point clouds from airborne small footprint LiDAR waveforms," Opt. Express 20, 25935-25947 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25935


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Ackermann, “Airborne laser scanning—present status and future expectations,” ISPRS J. Photogramm. Remote Sens.54(2-3), 64–67 (1999). [CrossRef]
  2. M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002). [CrossRef]
  3. C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009). [CrossRef]
  4. A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009). [CrossRef]
  5. C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009). [CrossRef]
  6. B. Jutzi and U. Stilla, “Range determination with waveform recording laser systems using a Wiener Filter,” ISPRS J. Photogramm. Remote Sens.61(2), 95–107 (2006). [CrossRef]
  7. Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011). [CrossRef]
  8. W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006). [CrossRef]
  9. G. Sun and K. J. Ranson, “Modeling lidar returns from forest canopies,” IEEE Trans. Geosci. Rem. Sens.38(6), 2617–2626 (2000). [CrossRef]
  10. Y. C. Qin, T. T. Vu, and Y. Ban, “Towards an optimal algorithm for lidar waveform decomposition,” IEEE Geosci. Remote Sens. Lett., doi:. [CrossRef]
  11. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009). [CrossRef]
  12. J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999). [CrossRef]
  13. M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005). [CrossRef]
  14. V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008). [CrossRef]
  15. L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007). [CrossRef]
  16. G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008). [CrossRef]
  17. Q. Chen, “Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry,” Remote Sens. Environ.114(7), 1610–1627 (2010). [CrossRef]
  18. L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010). [CrossRef]
  19. Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).
  20. W. Yao and U. Stilla, “Mutual enhancement of weak laser pulses for point cloud enrichment based on full-waveform analysis,” IEEE Trans. Geosci. Rem. Sens.48, 3571–3579 (2010).
  21. W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).
  22. M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008). [CrossRef]
  23. A. Persson, U. Söderman, and S. Ahlberg, “Visualization and analysis of full-waveform airborne laser scanner data”, in the IAPRS Vol.XXXVI, Part 3/W19, Enschede, Netherlands, 103–108 (2005).
  24. GeoLas Consulting, www.geolas.com/Downloads/GeocodeWF , (Last access on 8 Jan, 2012).
  25. C. Hug, private communication, Dec (2011).
  26. M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000). [CrossRef]
  27. J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011). [CrossRef]
  28. http://en.wikipedia.org/wiki/Normal_distribution , (Last access on 8 Jan, 2012).
  29. W. Yao and U. Stilla, “Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis,” IEEE Geosci. Remote Sens. Lett.8(4), 607–611 (2011). [CrossRef]
  30. B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited