OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25948–25959

Signal enhancement in multiphoton TIRF microscopy by shaping of broadband femtosecond pulses

Richard S. K. Lane, Alisdair N. Macpherson, and Steven W. Magennis  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25948-25959 (2012)
http://dx.doi.org/10.1364/OE.20.025948


View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that pulse shaping of a broadband Ti:sapphire laser can result in almost an order of magnitude increase in the sensitivity and signal to background ratio (SBR) of multiphoton total internal reflection fluorescence (TIRF) microscopy. We produced transform-limited pulses of 15 fs duration at the sample, and observed a 8-fold enhancement in the fluorescence of CdSe/ZnS quantum dots via two-photon objective-type TIRF excitation. There was a concomitant 6-fold increase of the SBR upon compression of the pulse duration. Enhancement of non-linear evanescent imaging has recently been demonstrated using surface-plasmons [Opt. Express 17, 5987 (2009)] and structured substrates [Opt. Express 18, 23218 (2010)]. Our approach of ultrafast pulse shaping could be used alone or combined with these new methods to offer significant gains in image quality.

© 2012 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(320.5540) Ultrafast optics : Pulse shaping
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 2, 2012
Revised Manuscript: October 23, 2012
Manuscript Accepted: October 24, 2012
Published: November 1, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Richard S. K. Lane, Alisdair N. Macpherson, and Steven W. Magennis, "Signal enhancement in multiphoton TIRF microscopy by shaping of broadband femtosecond pulses," Opt. Express 20, 25948-25959 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Axelrod, “Chapter 7: Total internal reflection fluorescence microscopy,” Methods Cell Biol.89, 169–221 (2008). [CrossRef] [PubMed]
  2. D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983). [CrossRef] [PubMed]
  3. O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008). [CrossRef] [PubMed]
  4. P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011). [CrossRef] [PubMed]
  5. A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011). [CrossRef] [PubMed]
  6. C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008). [CrossRef] [PubMed]
  7. B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011). [CrossRef] [PubMed]
  8. R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008). [CrossRef] [PubMed]
  9. G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003). [CrossRef] [PubMed]
  10. Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993). [CrossRef] [PubMed]
  11. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett.21(22), 1848–1850 (1996). [CrossRef] [PubMed]
  12. I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997). [CrossRef] [PubMed]
  13. F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003). [CrossRef] [PubMed]
  14. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D38(10), R185–R197 (2005). [CrossRef]
  15. G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001). [CrossRef]
  16. C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004). [CrossRef]
  17. S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005). [CrossRef]
  18. D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009). [CrossRef]
  19. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt.43(5), 1063–1071 (2004). [CrossRef] [PubMed]
  20. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  21. R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J.-P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express18(22), 23218–23225 (2010). [CrossRef] [PubMed]
  22. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express17(8), 5987–5997 (2009). [CrossRef] [PubMed]
  23. R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011). [CrossRef] [PubMed]
  24. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009). [CrossRef] [PubMed]
  25. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008). [CrossRef] [PubMed]
  26. C. Soeller and M. B. Cannell, “Construction of a two-photon microscope and optimisation of illumination pulse duration,” Pflügers Arch. Eur. J. Appl. Physiol.432, 555–561 (1996).
  27. G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007). [CrossRef]
  28. A. M. Larson and A. T. Yeh, “Ex vivo characterization of sub-10-fs pulses,” Opt. Lett.31(11), 1681–1683 (2006). [CrossRef] [PubMed]
  29. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003). [CrossRef] [PubMed]
  30. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008). [CrossRef]
  31. P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009). [CrossRef] [PubMed]
  32. D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt.6(1), 6–13 (2001). [CrossRef] [PubMed]
  33. L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010). [CrossRef] [PubMed]
  34. R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009). [CrossRef] [PubMed]
  35. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008). [CrossRef] [PubMed]
  36. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008). [CrossRef] [PubMed]
  37. T. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern.SMC-8, 630–632 (1978).
  38. V. V. Lozovoy and M. Dantus, “When shorter is better,” in “Commercial and biomedical applications of ultrafast lasers IX,” Proc. SPIE7203, 72030Y, 72030Y-7 (2009). [CrossRef]
  39. W. Wang, Y. Liu, P. Xi, and Q. Ren, “Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime,” Appl. Opt.49(35), 6703–6709 (2010). [CrossRef] [PubMed]
  40. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998). [CrossRef] [PubMed]
  41. Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009). [CrossRef]
  42. S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol.7(9), 724–729 (2000). [CrossRef] [PubMed]
  43. K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express19(6), 5386–5396 (2011). [CrossRef] [PubMed]
  44. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009). [CrossRef] [PubMed]
  45. D. Brinks, R. Hildner, F. D. Stefani, and N. F. van Hulst, “Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments,” Opt. Express19(27), 26486–26499 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited