OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25970–25978

Evidence of speckle in extreme-UV lithography

Alessandro Vaglio Pret, Roel Gronheid, Jan Engelen, Pei-Yang Yan, Michael J. Leeson, and Todd R. Younkin  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25970-25978 (2012)
http://dx.doi.org/10.1364/OE.20.025970


View Full Text Article

Enhanced HTML    Acrobat PDF (2622 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on reflective optics at 13.5 nm, extreme-UV lithography is the ultimate top-down technique to define structures below 22 nm but faces several challenges arising from the discrete nature of light and matter. Owing to the short wavelength, mask surface roughness plays a fundamental role in the increase of speckle pattern contrast, compromising the uniformity of the printed features. Herein, we have used a mask with engineered gradient surface roughness to illustrate the impact that speckle has on the resulting photoresist pattern. The speckle increases the photoresist roughness, but surprisingly, only when the mask surface roughness is well above existing manufacturing capabilities.

© 2012 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.5220) Imaging systems : Photolithography

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 7, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 17, 2012
Published: November 2, 2012

Citation
Alessandro Vaglio Pret, Roel Gronheid, Jan Engelen, Pei-Yang Yan, Michael J. Leeson, and Todd R. Younkin, "Evidence of speckle in extreme-UV lithography," Opt. Express 20, 25970-25978 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. ITRS website. http://www.itrs.net/ .
  2. C. Wagner and H. Noreen, “EUV lithography: lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010). [CrossRef]
  3. M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).
  4. R. Hudyma and U. Mann, “Projection system for EUV lithography,” U.S. patent 7,355,678 (April 8, 2008). http://spie.org/samples/PM178.pdf
  5. G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006). [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2004), Chap. 6.
  7. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2010), Chaps. 1–3, 6, 8.
  8. P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).
  9. G. M. Gallatin and P. P. Naulleau, “Modeling the transfer of line edge roughness from an EUV mask to the wafer,” Proc. SPIE7969, 796903, 796903-10 (2011). [CrossRef]
  10. S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011). [CrossRef]
  11. Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).
  12. P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012). [CrossRef]
  13. P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008). [CrossRef]
  14. Y. Wei and R. L. Brainard, Line-Edge Roughness of Resist Patterns in Advanced Processes for 193-Nm Immersion Lithography (SPIE Press, 2009), Chap. 10.
  15. T.-S. Gau and C.-C. Hsia, “Illumination aperture filter design using superposition,” U.S. patent 6,361,909 (March 26, 2002). http://www.google.com/patents/US6361909 .
  16. K. Jain, C. G. Willson, B. J. Lin, and B. J, “Fine-line high-speed excimer laser lithography,” Symposium on VLSI Technology, Digest of Technical Papers (1982), pp. 92–93.
  17. O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).
  18. G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).
  19. C. N. Anderson and P. P. Naulleau, “Do not always blame the photons: relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists,” J. Vac. Sci. Technol. B27(2), 665–670 (2009). [CrossRef]
  20. C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).
  21. C. A. Mack, Fundamental Principles of Optical Lithography (Wiley & Sons, 2007), Chaps. 5–7.
  22. P. P. Naulleau and G. M. Gallatin, “Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt.42(17), 3390–3397 (2003). [CrossRef] [PubMed]
  23. V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003). [CrossRef]
  24. S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).
  25. H.-J. Mann, “Six-mirror EUV projection system with low incidence angles,” U.S. patent 7,973,908 (July 5, 2011). http://www.google.com/patents/US20090079952 .
  26. A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).
  27. A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004). [CrossRef]
  28. C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).
  29. A. K. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001), Chaps. 2–4.
  30. C. Rydberg, J. Bengtsson, and T. Sandström, “Performance of diffractive optical elements for homogenizing partially coherent light,” J. Opt. Soc. Am. A24(10), 3069–3079 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited