OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 26012–26020

On metamaterial circular polarizers based on metal N-helices

Johannes Kaschke, Justyna K. Gansel, and Martin Wegener  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 26012-26020 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal-helix based metamaterials have been introduced as compact and broadband circular polarizers. However, the end of the metal wire together with the helix center defines an axis in space, which unavoidably breaks the rotational symmetry at the metamaterial surface. This introduces linear birefringence. Symmetry can be recovered by considering an integer number, e.g. N = 4, of intertwined helices arranged to a square array. We show that the operation principles are fundamentally different though. Metamaterial circular polarizers based on N = 4 helices, unlike single helices, inherently require absorption of the constituent metal. Otherwise, the combination of a four-fold rotational axis and time-inversion symmetry strictly forbids circular-polarizer action. Our symmetry analysis is confirmed by extensive numerical calculations comparing results for perfect electric conductors with those for a free-electron Drude metal with finite damping.

© 2012 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: August 9, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: September 28, 2012
Published: November 2, 2012

Johannes Kaschke, Justyna K. Gansel, and Martin Wegener, "On metamaterial circular polarizers based on metal N-helices," Opt. Express 20, 26012-26020 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  2. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: A numerical parameter study,” Opt. Express18(2), 1059–1069 (2010). [CrossRef] [PubMed]
  3. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett.105(24), 247401 (2010). [CrossRef] [PubMed]
  4. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bichiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009). [CrossRef]
  5. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. (Deerfield Beach Fla.)23(27), 3018–3021 (2011). [CrossRef] [PubMed]
  6. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100(10), 101109 (2012). [CrossRef]
  7. M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett.32(17), 2547–2549 (2007). [CrossRef] [PubMed]
  8. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  9. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012). [CrossRef] [PubMed]
  10. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett.35(15), 2588–2590 (2010). [CrossRef] [PubMed]
  11. Z. Yang, M. Zhao, and P. Lu, “Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials,” Opt. Express19(5), 4255–4260 (2011). [CrossRef] [PubMed]
  12. J. D. Kraus and R. Marhefka, Antennas: For All Applications, 3rd ed. (McGraw-Hill, 2003).
  13. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004). [CrossRef]
  14. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  15. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  16. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  17. C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 367–375 (2010). [CrossRef]
  18. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. doi: 10.1002/lpor.201100046. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited