OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 26062–26074

Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization

Khalil Kechaou, Frédéric Grillot, Jean-Guy Provost, Bruno Thedrez, and Didier Erasme  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 26062-26074 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that semiconductor distributed feedback lasers (DFB) are key devices for optical communications. However direct modulation applications are limited by the frequency chirp induced by current modulation. We demonstrate that a proper external control laser operation leads to chirp-to-power ratio (CPR) stabilization over a wide range of modulation frequencies as compared to the free-running case. Under experimentally selected optical feedback conditions, the CPR decreases significantly in the adiabatic regime from about 650 MHz/mW in the solitary case down to 65 MHz/mW. Experimental results are also confirmed by numerical investigations based on the transfer matrix method. Simulations point out the possible optimization of the CPR in the adiabatic regime by considering a judicious cavity design in conjunction with a proper external control. These results demonstrate important routes for improving the transmission performance in optical telecommunication systems.

© 2012 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 9, 2012
Revised Manuscript: July 22, 2012
Manuscript Accepted: September 12, 2012
Published: November 2, 2012

Khalil Kechaou, Frédéric Grillot, Jean-Guy Provost, Bruno Thedrez, and Didier Erasme, "Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization," Opt. Express 20, 26062-26074 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Petermann, Laser Diode Modulation and Noise (Kuwer Academic Publisher, 1991).
  2. K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012). [CrossRef]
  3. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010). [CrossRef]
  4. J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1,55 μm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett.6(4), 558–560 (1994). [CrossRef]
  5. N. A. Naderi, F. Grillot, V. Kovanis, and L. F. Lester, “Simultaneous low linewidth enhancement factor and high bandwidth quantum-dash injection-locked laser,” International Photon. Conf. Arlington, USA (2011).
  6. F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002). [CrossRef]
  7. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity (Wiley, 23–54, 2005).
  8. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron.24(7), 1242–1247 (1988). [CrossRef]
  9. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
  10. D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985). [CrossRef]
  11. C. Henry and R. F. Kazarinov, “Instabilities of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron.22(2), 294–301 (1986). [CrossRef]
  12. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992). [CrossRef]
  13. J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988). [CrossRef]
  14. G. Duan, P. Gallion, and G. Debarge, “Analysis of frequency chirping of semiconductor lasers in the presence of optical feedback,” Opt. Lett.12(10), 800–802 (1987). [CrossRef] [PubMed]
  15. F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002). [CrossRef]
  16. J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a mach-zehnder interferometer,” IEEE Photon. J.3(3), 476–488 (2011). [CrossRef]
  17. R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986). [CrossRef]
  18. L. Olofsson and T. G. Brown, “Frequency dependence of the chirp factor in 1.55 μm distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett.4(7), 688–691 (1992). [CrossRef]
  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  20. G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett.1(12), 419–421 (1989). [CrossRef]
  21. G. P. Agrawal, Semiconductor Lasers (Van Nostrand Reinhold, 1993)
  22. P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989). [CrossRef]
  23. B. Thedrez, J. M. Rainsant, N. Aberkane, B. Andre, H. Bissessur, J. G. Provost, and B. Fernier, “ Power and facet phase dependence of chirp for index and gain-coupled DFB lasers,” paper TuE41, Semiconductor Laser Conference, 175–176 (1998).
  24. F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004). [CrossRef]
  25. F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003). [CrossRef]
  26. B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987). [CrossRef]
  27. A. Lestra and P. Brosson, “Design rules for a low-chirp integrated DFB laser with electroabsorption modulator,” IEEE Photon. Technol. Lett.8(8), 998–1000 (1996). [CrossRef]
  28. K. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987). [CrossRef]
  29. I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991). [CrossRef]
  30. L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron.36(10), 1151–1160 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited