OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 26075–26081

Temperature stable 1.3 μm emission from GaAs

Slawomir Prucnal, Kun Gao, Wolfgang Anwand, Manfred Helm, Wolfgang Skorupa, and Shengqiang Zhou  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 26075-26081 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gallium arsenide has outstanding performance in optical communication devices for light source purposes. Different approaches have been done to realize the luminescence from GaAs matching the transmission window of optical fibers. Here we present the realization of quasi- temperature independent photoluminescence at around 1.3 μm from millisecond-range thermally treated GaAs. It is shown that the VAs donor and X acceptor pairs are responsible for the 1.3 μm emission. The influence of the flash-lamp-annealing on the donor-acceptor pair (DAP) formation in the nitrogen and manganese doped and un-doped semi-insulating GaAs wafers were investigated. The concentration of DAP and the 1.3 μm emission can be easily tuned by controlling doping and annealing conditions.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:

Original Manuscript: June 1, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: October 15, 2012
Published: November 2, 2012

Slawomir Prucnal, Kun Gao, Wolfgang Anwand, Manfred Helm, Wolfgang Skorupa, and Shengqiang Zhou, "Temperature stable 1.3 μm emission from GaAs," Opt. Express 20, 26075-26081 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.-H. Wei and A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys,” Phys. Rev. Lett.76(4), 664–667 (1996). [CrossRef] [PubMed]
  2. E. D. Jones, N. A. Modine, A. A. Allerman, S. R. Kurtz, A. F. Wright, S. Tozer, and X. Wei, “Band structure of InxGa1-xAs1-yNy alloys and effects of pressure,” Phys. Rev. B60(7), 4430–4433 (1999). [CrossRef]
  3. I. Suemune, K. Uesugi, and W. Walukiewicz, “Role of nitrogen in the reduced temperature dependence of band-gap energy in GaNAs,” Appl. Phys. Lett.77(19), 3021–3023 (2000). [CrossRef]
  4. W. Orellana and A. C. Ferraz, “Ab initio study of substitutional nitrogen in GaAs,” Appl. Phys. Lett.78(9), 1231–1233 (2001). [CrossRef]
  5. W. Huang, M. Yoshimoto, Y. Takehara, J. Saraie, and K. Oe, “GaNyAs1-x-yBix Alloy Lattice Matched to GaAs with 1.3 µm Photoluminescence Emission,” Jpn. J. Appl. Phys.43(No. 10B), L1350–L1352 (2004). [CrossRef]
  6. T. Shima, S. Kimura, T. Iida, A. Obara, Y. Makita, K. Kudo, and K. Tanaka, “High concentration nitrogen ion doping into GaAs for the fabrication of GaAsN,” Nucl. Instr. Method B118(1-4), 743–747 (1996). [CrossRef]
  7. H. Ch. Alt, Y. V. Gomeniuk, G. Lenk, and B. Wiedemann, “GaAsN formation by implantation of nitrogen into GaAs studied by infrared spectroscopy,” Physica B340–342, 394–398 (2003). [CrossRef]
  8. K. M. Yu, S. V. Novikov, R. Broesler, I. N. Demchenko, J. D. Denlinger, Z. Liliental-Weber, F. Luckert, R. W. Martin, W. Walukiewicz, and C. T. Foxon, “Highly mismatched crystalline and amorphous GaN1−xAsx alloys in the whole composition range,” J. Appl. Phys.106(10), 103709 (2009). [CrossRef]
  9. Y. Tominaga, K. Oe, and M. Yoshimoto, “Temperature-insensitive photoluminescence emission wavelength in GaAs1–xBix/GaAs multiquantum wells,” Phys. Status Solidi C8(2), 260–262 (2011). [CrossRef]
  10. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B Condens. Matter52(16), 11969–11981 (1995). [CrossRef] [PubMed]
  11. C. V. Reddy, S. Fung, and C. D. Beling, “Nature of the bulk defects in GaAs through high-temperature quenching studies,” Phys. Rev. B Condens. Matter54(16), 11290–11297 (1996). [CrossRef] [PubMed]
  12. H. Lei, H. S. Leipner, V. Bondarenko, and J. Schreiber, “Identification of the 0.95 eV luminescence band in n-type GaAs:Si,” J. Phys. Condens. Matter16(2), S279–S285 (2004). [CrossRef]
  13. W. Skorupa, T. Gebel, R. A. Yankov, S. Paul, W. Lerch, D. F. Downey, and E. A. Arevalo, “Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing,” J. Electrochem. Soc.152(6), G436–G440 (2005). [CrossRef]
  14. T. Prokofyeva, T. Sauncy, M. Seon, M. Holtz, Y. Qiu, S. Nikishin, and H. Temkin, “Raman studies of nitrogen incorporation in GaAs1−xNx,” Appl. Phys. Lett.73(10), 1409–1411 (1998). [CrossRef]
  15. M. R. Islam, P. Verma, M. Yamada, M. Tatsumi, and K. Kinoshita, “Micro-Raman Characterization of Starting Material for Traveling Liquidus Zone Growth Method,” Jpn. J. Appl. Phys.41(Part 1, No. 2B), 991–995 (2002). [CrossRef]
  16. M. R. Islam, N. F. Chen, and M. Yamada, “Raman scattering study on Ga1-xMnx As prepared by Mn ions implantation, deposition and post-annealing,” Cryst. Res. Technol.44(2), 215–220 (2009). [CrossRef]
  17. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983). [CrossRef]
  18. S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin, and H. Temkin, “Luminescence of as-grown and thermally annealed GaAsN/GaAs,” Appl. Phys. Lett.72(15), 1857–1859 (1998). [CrossRef]
  19. D. Bürger, S. Zhou, J. Grenzer, H. Reuther, W. Anwand, V. Gottschalch, M. Helm, and H. Schmidt, “The influence of annealing on manganese implanted GaAs films,” Nucl. Instr. Method B267, 1626–1629 (2009).
  20. O. Yastrubchak, J. Zuk, H. Krzyzanowska, J. Z. Domagala, T. Andrearczyk, J. Sadowski, and T. Wosinski, “Photoreflectance study of the fundamental optical properties of (Ga,Mn)As epitaxial films,” Phys. Rev. B83(24), 245201 (2011). [CrossRef]
  21. V. Bondarenko, J. Gebauer, F. Redmann, and R. Krause-Rehberg, “Vacancy formation in GaAs under different equilibrium conditions,” Appl. Phys. Lett.87(16), 161906 (2005). [CrossRef]
  22. K. Saarinen, P. Hautojärvi, P. Lanki, and C. Corbel, “Ionization levels of As vacancies in as-grown GaAs studied by positron-lifetime spectroscopy,” Phys. Rev. B Condens. Matter44(19), 10585–10600 (1991). [CrossRef] [PubMed]
  23. K. Saarinen, S. Kuisma, P. Hautojärvi, C. Corbel, and C. LeBerre, “Native vacancies in semi-insulating GaAs observed by positron lifetime spectroscopy under photoexcitation,” Phys. Rev. Lett.70(18), 2794–2797 (1993). [CrossRef] [PubMed]
  24. S. Kuisma, K. Saarinen, P. Hautojärvi, C. Corbel, and C. LeBerre, “Optical processes related to arsenic vacancies in semi-insulating GaAs studied by positron spectroscopy,” Phys. Rev. B Condens. Matter53(15), 9814–9830 (1996). [CrossRef] [PubMed]
  25. M. Suezawa, A. Kasuya, Y. Nishina, and K. Sumino, “Excitation spectra of 1200 and 1320 nm photoluminescence lines in annealed gallium arsenide doped with silicon,” J. Appl. Phys.76(2), 1164–1168 (1994). [CrossRef]
  26. J. Liang, J. Jiang, J. Zhao, and Y. Gao, “Studies on 0.96 and 0.84 eV photoluminescence emissions in GaAs epilayers grown on Si,” J. Appl. Phys.79(9), 7173–7176 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited