OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 26082–26088

Elliptically polarized THz-wave generation from GaP-THz planar waveguide via collinear phase-matched difference frequency mixing

Kyosuke Saito, Tadao Tanabe, and Yutaka Oyama  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 26082-26088 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We carried out terahertz (THz)-wave generation from the GaP planar waveguides under collinear phase-matched difference-frequency mixing of two near-infrared sources. TE- and TM-mode of THz-waves were generated simultaneously by adjusting the polarization direction of two incident infrared sources. The phase shift between TE- and TM-mode of THz-wave in the waveguide was dependent on the waveguide length and contributed to the generation of the elliptical polarized THz-wave. The ellipticity of generated THz-wave increased as waveguide length increased. We indicated the possibility of control of rotational direction of elliptical polarization of emitted THz wave.

© 2012 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: June 26, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: September 18, 2012
Published: November 2, 2012

Kyosuke Saito, Tadao Tanabe, and Yutaka Oyama, "Elliptically polarized THz-wave generation from GaP-THz planar waveguide via collinear phase-matched difference frequency mixing," Opt. Express 20, 26082-26088 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Nishizawa, “Open-up a new field in tera-hertz band,” J. Acoust. Soc. Jpn57(2), 163–169 (2001).
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  3. D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984). [CrossRef]
  4. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B13(11), 2424–2436 (1996). [CrossRef]
  5. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36(30), 7853–7859 (1997). [CrossRef] [PubMed]
  6. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002). [CrossRef]
  7. F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B4(12), 4556–4578 (1971). [CrossRef]
  8. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003). [CrossRef]
  9. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003). [CrossRef]
  10. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003). [CrossRef]
  11. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006). [CrossRef]
  12. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys.95(12), 7588–7591 (2004). [CrossRef]
  13. W. Shi and Y. J. Ding, “Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP,” Opt. Lett.30(9), 1030–1032 (2005). [CrossRef] [PubMed]
  14. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006). [CrossRef]
  15. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002). [CrossRef] [PubMed]
  16. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006). [CrossRef] [PubMed]
  17. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999). [CrossRef] [PubMed]
  18. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002). [CrossRef]
  19. X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992). [CrossRef]
  20. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996). [CrossRef]
  21. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002). [CrossRef]
  22. A. Borghesi and G. Guizzetti, Handbook of Optical Constants of Solids (Academic, 1985).
  23. J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007). [CrossRef]
  24. K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009). [CrossRef]
  25. Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express19(24), 24577–24582 (2011). [CrossRef] [PubMed]
  26. K. L. Vodopyanov and Y. H. Avetisyan, “Optical terahertz wave generation in a planar GaAs waveguide,” Opt. Lett.33(20), 2314–2316 (2008). [CrossRef] [PubMed]
  27. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express15(25), 16308–16315 (2007). [CrossRef] [PubMed]
  28. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett.34(3), 274–276 (2009). [CrossRef] [PubMed]
  29. F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett.89(21), 211105 (2006). [CrossRef]
  30. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express15(18), 11117–11125 (2007). [CrossRef] [PubMed]
  31. A. Y. Elezzabi and S. Sederberg, “Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment,” Opt. Express17(8), 6600–6612 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited