OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26110–26116

Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26110-26116 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a characterization of the spectral modulation and wavelength shifting induced via cross-phase modulation (XPM) in a hydrogenated amorphous silicon (a-Si:H) core optical fiber. Pump-probe experiments using picosecond and femtosecond signal pulses are shown to be in good agreement with numerical simulations of the coupled nonlinear propagation equations. The large 10nm red-shifts obtained with the femtosecond probe pulses are attributed to the high Kerr nonlinearity of the a-Si:H material. Extinction ratios as high as 12dB are measured for the conversion process at telecommunications wavelengths, indicating the potential for high-speed nonlinear optical control in a-Si:H fibers and waveguides.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 13, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: October 25, 2012
Published: November 5, 2012

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, "Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers," Opt. Express 20, 26110-26116 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express12, 4094–4102 (2004). [CrossRef] [PubMed]
  2. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express15, 7802–7809 (2007). [CrossRef] [PubMed]
  3. F. Li, M. Pelusi, D-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160,Gb/s via FWM in a silicon nanowire,” Opt. Express18, 3905–3910 (2010). [CrossRef] [PubMed]
  4. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003). [CrossRef]
  5. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18, 5668–5673 (2010). [CrossRef] [PubMed]
  6. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011). [CrossRef]
  7. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett.37, 1382–1384 (2012). [CrossRef] [PubMed]
  8. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20, 22609–22615 (2012). [CrossRef] [PubMed]
  9. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express16, 16826–16831 (2010). [CrossRef]
  10. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon.4, 535–544 (2010). [CrossRef]
  11. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express16, 18675–18683 (2008). [CrossRef]
  12. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express17, 18076–18082 (2009). [CrossRef] [PubMed]
  13. N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2012). [CrossRef]
  14. A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett.37, 3351–3353 (2012). [CrossRef]
  15. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express14, 8336–8346 (2006). [CrossRef] [PubMed]
  16. E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95, 051101 (2009). [CrossRef]
  17. H. Hsieh, K. Feng, and M. M. Lee, “Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators,” Opt. Express18, 9613–9621 (2010). [CrossRef] [PubMed]
  18. I. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express15, 1135–1146 (2007). [CrossRef] [PubMed]
  19. T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech.29, 1790–1796 (2011). [CrossRef]
  20. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9, 561–658 (1980). [CrossRef]
  21. P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011). [CrossRef] [PubMed]
  22. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32, 2031–2033 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited