OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26184–26199

Traveling wave electrode design of electro-optically modulated coupled-cavity surface-emitting lasers

Mateusz Zujewski, Hugo Thienpont, and Krassimir Panajotov  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26184-26199 (2012)
http://dx.doi.org/10.1364/OE.20.026184


View Full Text Article

Enhanced HTML    Acrobat PDF (2938 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel design of an electro-optically modulated coupled-cavity vertical-cavity surface-emitting laser (CC-VCSEL) with traveling wave electrodes of the modulator cavity, which allows to overcome the RC time constant of a traditional lumped electrode structures. The CC-VCSEL optical design is based on longitudinal mode switching which has recently experimentally demonstrated a record modulation speed. We carry out segmented transmission line electrical design of the modulator cavity in order to compensate for the low impedance of the modulator section and to match the 50 Ω electrical network. We have optimized two types of highly efficient modulator structures reaching −3 dB electrical cut-off frequency of fcut-off = 330 GHz with maximum reflection of −22 dB in the range from fLF = 100 MHz to fcut-off and 77 – 89% modulation efficiency.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(260.6580) Physical optics : Stark effect
(250.4110) Optoelectronics : Modulators
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 20, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: October 1, 2012
Published: November 5, 2012

Citation
Mateusz Zujewski, Hugo Thienpont, and Krassimir Panajotov, "Traveling wave electrode design of electro-optically modulated coupled-cavity surface-emitting lasers," Opt. Express 20, 26184-26199 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lannoo, G. Das, J. Nelis, B. Charbonnier, A. Pizzinat, M. Popov, A. Gavler, C. P. Larsen, D. Chiaroni, T. Koonen, E. Tangdiongga, H. van den Boom, H. Wessing, M. Giltrelli, B. Ortega, I. Artundo, G. Puerto, G. Treffner, J. Faller, E. Hugues Salas, G. Tartarini, P. Faccin, R. Gaudino, E. Ortego, M. Rizzetti, W. Grabowski, and E. Grard, “Grant Agreement No. 212 352, ALPHA Architectures for fLexible Photonic Home and Access networks,” White paper 2011, ”[ONLINE]” (2012). http://www.ict-alpha.eu/upload/institutter/com/alpha/white%20paper%20d1.3p_v01d.pdf
  2. N. Savage, “Linking with light [high-speed optical interconnects],” IEEE Spectros. 39, 32–36 (2002). [CrossRef]
  3. E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for Ultra-Short-Reach applications,” Intel Technol. J8(2), 115–127 (2004).
  4. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C.-K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron.12, 1032–1044 (2006). [CrossRef]
  5. Y. C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed vcsels with 35Gbit/s error-free operation,” Electron. Lett.43(19), 1022–1024 (2007). [CrossRef]
  6. A. N. Al-Omari, I. K. Al-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850 nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol.24 (2009). [CrossRef]
  7. P. Westbergh, J. S. Gustavsson, B. Kogel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett.46(14), 1014–1015 (2010). [CrossRef]
  8. P. Moser, P. Wolf, J.A. Lott, G. Larisch, A. Payusov, A. Mutig, W. Unrau, N.N. Ledentsov, W. Hofmann, and D. Bimberg, “High-speed VCSELs for energy efficient computer interconnects,” Proc. of SPIE8432, 843202 (2012). [CrossRef]
  9. R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett.65(16), 2093–2095 (1994). [CrossRef]
  10. P. Michler, M. Hilpert, and G. Reiner, “Dynamics of dual-wavelength emission from a coupled semiconductor microcavity laser,” Appl. Phys. Lett.70, 2073–2075 (1997). [CrossRef]
  11. A. Fischer, K. Choquette, W. Chow, H. Hou, and K. Geib, “Coupled resonator vertical-cavity laser diode,” Appl. Phys. Lett.75, 3020–3022 (1999). [CrossRef]
  12. J. Carlin, R. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength Bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett.75, 908–910 (1999). [CrossRef]
  13. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett.12, 1316–1318 (2000). [CrossRef]
  14. V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, “Control of polarization switching in vertical coupled-cavities surface-emitting lasers,” IEEE Photon. Technol. Lett.16, 365–367 (2004). [CrossRef]
  15. J. Hudgings, R. Stone, S. Lim, K. Lau, and C. Chang-Hasnain, “Comparative study of the analog performance of a vertical-cavity surface-emitting laser under gain and cavity loss modulation,” Appl. Phys. Lett.77, 2092–2094 (2000). [CrossRef]
  16. D. M. Grasso, D. K. Serkland, G. M. Peake, K. M. Geib, and K. D. Choquette, “Direct modulation characteristics of composite resonator vertical-cavity lasers,” IEEE J. Quantum Electron.42, 1248–1254 (2006). [CrossRef]
  17. A. Paraskevopoulos, H. J. Hensel, W. D. Molzow, H. Klein, N. Grote, N. N. Ledentsov, V. A. Shchukin, C. Moeller, A. R. Kovsh, D. A. Livshits, I. L. Krestnikov, S. S. Mikhrin, P. Matthijsse, and G. Kuyt, “Ultra-high-bandwidth (> 35 GHz) electrooptically-modulated VCSEL,” in Optical Fiber Communication Conference, 2006, 2699–2701 (2006).
  18. J. Van Eisden, M. Yakimov, V. Tokranov, M. Varanasi, E. M. Mohammed, I. A. Young, and S. Oktyabrsky, “Modulation properties of VCSEL with intracavity modulator,” Proc. of SPIE6484, A4840 (2007).
  19. V. A. Shchukin, N. N. Ledentsov, J. A. Lott, H. Quast, F. Hopfer, L. Y. Karachinsky, M. Kuntz, P. Moser, A. Mutig, A. Strittmatter, V. P. Kalosha, and D. Bimberg, “Ultrahigh-speed electrooptically-modulated VCSELs: modeling and experimental results,” Proc. of SPIE6889, H8890 (2008).
  20. M. Yakimov, J. van Eisden, V. Tokranov, M. Varanasi, S. R. Oktyabrsky, E. M. Mohammed, and I. A. Young, “Concept of feedback-free high-frequency loss modulation in detuned duo-cavity vertical cavity surface-emitting laser,” J. Vac. Sci. Technol., B28 (2010). [CrossRef]
  21. C. Chen, K. L. Johnson, M. Hibbs-Brenner, and K. D. Choquette, “Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser,” IEEE J. Quantum Electron.46, 438–446 (2010). [CrossRef]
  22. K. Panajotov, M. Zujewski, and H. Thienpont, “Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching,” Opt. Express18, 27525–27533 (2010). [CrossRef]
  23. T. D. Germann, W. Hofmann, A. M. Nadtochiy, J.-H. Schulze, A. Mutig, A. Strittmatter, and D. Bimberg, “Electro-optical resonance modulation of vertical-cavity surface-emitting lasers,” Opt. Express20(5), 5099–5107 (2012). [CrossRef] [PubMed]
  24. M. Zujewski, H. Thienpont, and K. Panajotov, “Electrical Design of High-Speed Electro-Optically Modulated Coupled-Cavity VCSELs,” J. Lightwave Technol.29(19), 2992–2998 (2011). [CrossRef]
  25. M. Zujewski, H. Thienpont, and K. Panajotov, “Electro-optically modulated coupled-cavity VCSELs: electrical design optimization for high-speed operation,” Proc. of SPIE8432, 84320C (2012). [CrossRef]
  26. D.M. Pozar, Microwave Engineering, 2nd ed. (New York: Wiley, 1998)
  27. R.E. Collin, Foundations for Microwave Engineering (IEEE Press, 2001) [CrossRef]
  28. R. Lewen, S. Irmscher, U. Westergren, L. Thylen, and U. Eriksson, “Segmented transmission-line electroabsorption modulators,” J. Lightwave Technol.22(1), 172–179 (2004). [CrossRef]
  29. M. Chacinski, U. Westergren, B. Stoltz, L. Thylen, R. Schatz, and S. Hammerfeldt, “Monolithically Integrated 100 GHz DFB-TWEAM,” J. Lightwave Technol.27(16), 3410–3415 (2009). [CrossRef]
  30. R. Lewen, S. Irmscher, and U. Eriksson, “Microwave CAD circuit Modeling of a traveling-wave electroabsorption modulator,” IEEE Trans. Microw. Theory Tech.51(4, Part 1), 1117–1128 (2003). [CrossRef]
  31. M. Chacinski, U. Westergren, B. Stoltz, and L. Thylen, “Monolithically Integrated DFB-EA for 100 Gb/s Ethernet,” IEEE Electron Dev. Lett.29(12), 1312–1314 (2008). [CrossRef]
  32. “[ONLINE]” (2012). http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/bandstr.html
  33. A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, “Eletrorefraction Associated with WannierStark Localization in Strongly Coupled Three-Quantum-Well Structures,” IEEE J. Quantum Electron.36, 702–707 (2000). [CrossRef]
  34. M. P. Earnshaw and D. W. E. Allsopp, “Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells,” IEEE J. Quantum Electron.37, 897–904 (2001). [CrossRef]
  35. C. Chang, L. Chrostowski, and C. Chang-Hasnain, “Parasitics and design considerations on oxide-implant VC-SELs,” IEEE Photon. Technol. Lett.13, 1274–1276 (2001). [CrossRef]
  36. W. Nakwaski, M. Osinski, and J. Cheng, “Spreading resistance in proton-implanted vertical-cavity surface-emitting diode lasers,” Appl. Phys. Lett.61, 3101–3103 (1992). [CrossRef]
  37. A. Al-Omari and K. Lear, “Dielectric characteristics of spin-coated dielectric films using on-wafer parallel-plate capacitors at microwave frequencies,” IEEE Trans. Dielectr. Electr. Insul.12, 1151–1161 (2005). [CrossRef]
  38. S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers UniversityPiscataway, NJ, 2008)
  39. “[ONLINE]” (2012). http://www.iue.tuwien.ac.at/phd/quay/node39.html#fig-40
  40. “[ONLINE]” (2012). http://www.iue.tuwien.ac.at/phd/brech/ch_5_4.htm
  41. “[ONLINE]” (2012). http://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited