OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26200–26207

Taming the flow of light via active magneto-optical impurities

Hamidreza Ramezani, Zin Lin, Samuel Kalish, Tsampikos Kottos, Vassilios Kovanis, and Ilya Vitebskiy  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26200-26207 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the interplay of a magneto-optical layer sandwiched between two judiciously balanced gain and loss layers which are both birefringent with misaligned in-plane anisotropy, induces unidirectional electromagnetic modes. Embedding one such optically active non-reciprocal unit between a pair of birefringent Bragg reflectors, results in an exceptionally strong asymmetry in light transmission. Remarkably, such asymmetry persists regardless of the incident light polarization. This photonic architecture may be used as the building block for chip-scale non-reciprocal devices such as optical isolators and circulators.

© 2012 OSA

OCIS Codes
(000.6800) General : Theoretical physics
(130.0130) Integrated optics : Integrated optics
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators

ToC Category:
Integrated Optics

Original Manuscript: July 31, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 16, 2012
Published: November 5, 2012

Hamidreza Ramezani, Zin Lin, Samuel Kalish, Tsampikos Kottos, Vassilios Kovanis, and Ilya Vitebskiy, "Taming the flow of light via active magneto-optical impurities," Opt. Express 20, 26200-26207 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and D. J. Lockwood, Silicon photonics (Springer, Germany, 2004).
  2. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications1, 1 (2012). [CrossRef]
  3. T. B. Simpson, Jia Ming Liu, Nicholas Usechak, and Vassilios Kovanis, Tunable photonic microwave oscillator self–locked by polarizationrotated optical feedback, Frequency Control Symposium (FCS), IEEE International (2012).
  4. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, 1991). [CrossRef]
  5. There are several ways to address the problem with absorption. One approach is to replace a uniform magnetic material with a slow-wave magneto-photonic structure [6]. Under certain conditions, such a structure can enhance asymmetric transmitance effects associated with magnetism, while significantly reducing absorption. The problem with the above approach is that it does not apply to infrared and optical frequencies it can only work at MW frequencies. Another approach is to incorporate gain and loss together with non-linearity [19]. In this case, however, optical isolation occurs only for specific power ranges.
  6. A. Figotin and I. Vitebskiy, “Absorption suppression in photonic crystals,” Phys. Rev. B77, 104421 (2008). [CrossRef]
  7. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in 𝒫𝒯 symmetric optical lattices,” Phys. Rev. Lett.100, 103904 (2008). [CrossRef] [PubMed]
  8. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical solitons in 𝒫𝒯 periodic potentials,” ibid. 100, 030402 (2008).
  9. C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys.6, 192 (2010). [CrossRef]
  10. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with 𝒫𝒯 symmetries,” Phys. Rev. A84, 040101(R) (2011). [CrossRef]
  11. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of 𝒫𝒯 -symmetry breaking in complex optical potentials,” Phys. Rev. Lett.103, 093902 (2009). [CrossRef] [PubMed]
  12. Z. Lin, J. Schindler, F. M. Ellis, and T. Kottos, “Experimental observation of the dual behavior of 𝒫𝒯 -symmetric scattering,” Phys. Rev. A85, 050101(R) (2012). [CrossRef]
  13. H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, “Bypassing the bandwidth theorem with 𝒫𝒯 symmetry,” Phys. Rev. A85, 062122 (2012). [CrossRef]
  14. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by 𝒫𝒯-symmetric periodic structures,” Phys. Rev. Lett106, 213901 (2011). [CrossRef] [PubMed]
  15. A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of 𝒫𝒯-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen.38, L171 (2005). [CrossRef]
  16. S. Longhi, “Bloch oscillations in complex crystals with 𝒫𝒯 symmetry,” Phys. Rev. Lett.103, 123601 (2009). [CrossRef] [PubMed]
  17. H. Ramezani, T. Kottos, V. Kovanis, and D. N. Christodoulides, “Exceptional-point dynamics in photonic honeycomb lattices with 𝒫𝒯 symmetry,” Phys. Rev. A85, 013818 (2012). [CrossRef]
  18. H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “𝒫𝒯 -symmetric Talbot effects,” Phys. Rev. Lett109, 033902 (2012). [CrossRef] [PubMed]
  19. H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear 𝒫𝒯 -symmetric optical structures,” Phys. Rev. A82, 043803 (2010). [CrossRef]
  20. S. Longhi, “𝒫𝒯 -symmetric laser absorber,” Phys. Rev. A82, 031801 (2010). [CrossRef]
  21. Y. D. Chong, Li Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010). [CrossRef] [PubMed]
  22. Y. D. Chong, L. Ge, and A. D. Stone, “𝒫𝒯-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett.106, 093902 (2011). [CrossRef] [PubMed]
  23. A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in 𝒫𝒯-symmetric optical couplers,” Phys. Rev. A82, 043818 (2010). [CrossRef]
  24. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E63, 066609 (2001). [CrossRef]
  25. P. A. Mello and N. Kumar, Quantum transport in mesoscopic systems: complexity and statistical fluctuations : a maximum-entropy viewpoint, Volume 4 of Mesoscopic Physics and Nanotechnology (Oxford University Press, India, 2004).
  26. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys.39, R151 (2006). [CrossRef]
  27. M. Levy and R. Li, “Polarization rotation enhancement and scattering mechanisms in waveguide magnetopho-tonic crystals,” Appl. Phys. Lett.89, 121113 (2006). [CrossRef]
  28. A. Vinogradov and Yu.E. Lozovik, “Inverse Borrmann effect in photonic crystals,” Phys. Rev. B80, 235106 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited