OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26208–26218

Time domain measurement of the THz refractivity of water vapor

Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26208-26218 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the measurement of the essentially frequency independent refractivity of water vapor from 0.1 to 1 THz, independent of the simultaneous strong THz pulse broadening and absorption. The humidity dependent transit time of THz pulses through a 170 m long round trip path was measured to a precision of 0.1 ps, using a mode-locked laser as an optical clock.

© 2012 OSA

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(250.0250) Optoelectronics : Optoelectronics
(320.7160) Ultrafast optics : Ultrafast technology
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 7, 2012
Revised Manuscript: October 3, 2012
Manuscript Accepted: October 30, 2012
Published: November 5, 2012

Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky, "Time domain measurement of the THz refractivity of water vapor," Opt. Express 20, 26208-26218 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Essen, “The refractive indices of water vapour, air, oxygen, nitrogen, hydrogen, deuterium and helium,” Proc. Phys. Soc. B66(3), 189–193 (1953). [CrossRef]
  2. L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principal constituents at 24,000 Mc/s,” Proc. Phys. Soc. B64(10), 862–875 (1951). [CrossRef]
  3. K. D. Froome, “The refractive indices of water vapour, air, oxygen, nitrogen and argon at 72 kMc/s,” Proc. Phys. Soc. B68(11), 833–835 (1955). [CrossRef]
  4. T. Manabe, Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono, “Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHz,” Int. J. Infrared Millim. Waves6(4), 313–322 (1985). [CrossRef]
  5. C. C. Bradley and H. A. Gebbie, “Refractive index of nitrogen, water vapor, and their mixtures at submillimeter wavelengths,” Appl. Opt.10(4), 755–758 (1971). [CrossRef] [PubMed]
  6. H. Matsumoto, “The refractive index of moist air in the 3-µm region,” Metrologia18(2), 49–52 (1982). [CrossRef]
  7. R. J. Hill and R. S. Lawrence, “Refractive index of water vapor in the infrared windows,” Infrared Phys.26(6), 371–376 (1986). [CrossRef]
  8. R. Schödel, A. Walkov, and A. Abou-Zeid, “High-accuracy determination of water vapor refractivity by length interferometry,” Opt. Lett.31(13), 1979–1981 (2006). [CrossRef] [PubMed]
  9. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B: Opt. Phys.7(10), 2006–2015 (1990). [CrossRef]
  10. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express19(9), 8830–8838 (2011). [CrossRef] [PubMed]
  11. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol.1, 264–273 (2011).
  12. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse transmission in the atmosphere,” IEEE Trans. THz Sci. Technol.2, 406–415 (2012).
  13. I. Wilke, A. M. MacLeod, W. A. Gillespie, G. Berden, G. M. H. Knippels, and A. F. G. van der Meer, “Single-shot electron-beam bunch length measurements,” Phys. Rev. Lett.88(12), 124801 (2002). [CrossRef] [PubMed]
  14. A. M. Weiner, Ultrafast Optics, (John Wiley and Sons, Inc. 2009).
  15. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Sub-millimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer60(5), 883–890 (1998). [CrossRef]
  16. P. Debye, Polar Molecules, 89–90 (Dover Publ. Co., 1957).
  17. B. R. Bean, and E. J. Dutton, Radio Meteorology (National Bureau of Standards, Monograph #92, March 1966), Chap. 1
  18. J. H. van-Vleck and V. F. Weisskopf, “On the shape of collision-broadened lines,” Rev. Mod. Phys.17(2-3), 227–236 (1945). [CrossRef]
  19. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publ. Co., 1975).
  20. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990). [CrossRef]
  21. A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, eds., Atmospheric Water Vapor, (Academic Press, 1980). This book is the Proceedings of the International Workshop on Atmospheric Water Vapor, Vail, Colorado, September 11–13, 1979.
  22. D. E. Burch and D. A. Gryvnak, “Continuum absorption by water vapor in the infrared and millimeter regions,” Proceedings of the International Workshop on Atmospheric Water Vapor, [21] 47–76 (1979).
  23. Y. Scribano and C. Leforestier, “Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum,” J. Chem. Phys.126(23), 234301 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited