OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26252–26260

Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinylcarbazole) films-coated liquid crystal cell

Yuan-Di Chen, Andy Ying-Guey Fuh, and Ko-Ting Cheng  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26252-26260 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the optically controllable light scattering based on dye-doped liquid crystals (DDLCs) in a cell, whose substrates are coated with poly(N-vinylcarbazole) (PVK) films. The optical control mechanism is the light-induced dissolution of PVK in DDLCs, which reforms the disordered LC distribution into multiple and micron-sized LC domains. The induced thermal effect on the process is investigated in detail. Scanning electron microscopy images are obtained to show the surface structures of the produced PVK films. The generated scattering can be switched back to the original one by particular thermally induced phase separation. Results indicate that the light-induced thermal effect and photoisomerization lead to the dissolution of PVK in DDLCs. Finally, scattering mode light shutter with different transmission is successfully achieved by illuminating the cell under various light intensities.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(230.0230) Optical devices : Optical devices

ToC Category:
Optical Devices

Original Manuscript: September 20, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: October 27, 2012
Published: November 6, 2012

Yuan-Di Chen, Andy Ying-Guey Fuh, and Ko-Ting Cheng, "Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinylcarbazole) films-coated liquid crystal cell," Opt. Express 20, 26252-26260 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Shian Li, A. Y. G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett.36(19), 3864–3866 (2011). [CrossRef] [PubMed]
  2. C. T. Wang, H. C. Jau, and T. H. Lin, “Optically controllable bistable reflective liquid crystal display,” Opt. Lett.37(12), 2370–2372 (2012). [CrossRef] [PubMed]
  3. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006). [CrossRef]
  4. S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011). [CrossRef]
  5. R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009). [CrossRef]
  6. Y. C. Hsiao, C. T. Hou, V. Y. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express19(24), 23952–23957 (2011). [CrossRef] [PubMed]
  7. S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).
  8. J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002). [CrossRef] [PubMed]
  9. A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012). [CrossRef]
  10. Y. D. Chen, A. Y. G. Fuh, and K. T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express20(15), 16777–16784 (2012). [CrossRef]
  11. C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Appl. Opt.32(28), 5481–5491 (1993). [CrossRef] [PubMed]
  12. A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt.32(28), 5475–5480 (1993). [CrossRef] [PubMed]
  13. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997). [CrossRef]
  14. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001). [CrossRef]
  15. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993). [CrossRef]
  16. P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011). [CrossRef] [PubMed]
  17. H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011). [CrossRef] [PubMed]
  18. P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012). [CrossRef] [PubMed]
  19. W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997). [CrossRef]
  20. H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978). [CrossRef]
  21. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991). [CrossRef]
  22. T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996). [CrossRef]
  23. A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett.17(6), 441–443 (1992). [CrossRef] [PubMed]
  24. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004). [CrossRef] [PubMed]
  25. P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009). [CrossRef]
  26. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006). [CrossRef]
  27. A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys.14, 1520–1523 (2004).
  28. N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998). [CrossRef]
  29. A. Y. G. Fuh, H. C. Lin, T. S. Mo, and C. H. Chen, “Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique,” Opt. Express13(26), 10634–10641 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited