OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26261–26274

Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26261-26274 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (8720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse of long wavelength. We demonstrate that both the confinement of the electron motion and the inhomogeneous character of the laser electric field play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In particular, in bow-tie nanostructures with small gaps, electron trajectories with large excursion amplitudes experience significant confinement and their contribution is essentially suppressed. In order to understand and characterize this feature, we combine the numerical solution of the time-dependent Schrödinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and classical tools to explain the extended harmonic spectra. The spatial inhomogeneity of the laser electric field modifies substantially the electron trajectories and contributes also to cutoff increase.

© 2012 OSA

OCIS Codes
(320.7120) Ultrafast optics : Ultrafast phenomena
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Ultrafast Optics

Original Manuscript: September 25, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: October 25, 2012
Published: November 6, 2012

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, "Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures," Opt. Express 20, 26261-26274 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys.60(4), 389–486 (1997). [CrossRef]
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys.72(2), 545–591 (2000). [CrossRef]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81(1), 163–234 (2009). [CrossRef]
  4. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007). [CrossRef]
  5. M. Lein, “Molecular imaging using recolliding electrons,” J. Phys. B40(16), R135–R173 (2007). [CrossRef]
  6. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett.71(13), 1994–1997 (1993). [CrossRef] [PubMed]
  7. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A49(3) 2117–2132 (1994). [CrossRef] [PubMed]
  8. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  9. I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot.5(11), 677–681 (2011). [CrossRef]
  10. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005). [CrossRef] [PubMed]
  12. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19) 193201 (2005). [CrossRef] [PubMed]
  13. A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A83(4), 043839 (2011). [CrossRef]
  14. I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A85(1), 013416 (2012). [CrossRef]
  15. M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A85(3), 033828 (2012). [CrossRef]
  16. T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A86(2), 023408 (2012). [CrossRef]
  17. M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature485(7397), E1–E3 (2012). [CrossRef] [PubMed]
  18. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature485(7397), E1–E3 (2012). [CrossRef]
  19. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser & Photon. Rev. (in press) (2012). [CrossRef]
  20. S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics13(7), 073010 (2011). [CrossRef]
  21. F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,”, Phys. Rev. B84(12), 121406(R) (2011).
  22. S. Zherebtsov and , “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys.7(8), 656–662 (2011). [CrossRef]
  23. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett.96(7), 077401 (2006). [CrossRef] [PubMed]
  24. M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett.105(2), 257601 (2010). [CrossRef]
  25. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475(7354), 78–81 (2011). [CrossRef] [PubMed]
  26. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B45(7), 074006 (2012). [CrossRef]
  27. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature483(7388), 190–193 (2012). [CrossRef] [PubMed]
  28. P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther41, 83–142 (1999). [CrossRef]
  29. A. L’Huillier and M. Lewenstein, “Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization,” Strong Field Laser Physics ed. T. Brabec, Springer Series in Optical Sciences (Springer, 2008).
  30. J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).
  31. Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A44(9), 5997–6008 (1991). [CrossRef] [PubMed]
  32. J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A45(7), 4998–5010 (1992). [CrossRef] [PubMed]
  33. K. J. Schafer and K. C. Kulander, “High harmonic generation from ultrafast pump lasers,” Phys. Rev. Lett.78(4), 638–641 (1997). [CrossRef]
  34. A. Thai, M. Hemmer, P. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrierenvelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett.36(19), 3918–3920 (2011). [CrossRef] [PubMed]
  35. S. S. Aćimović, “Introduction to nanoparticle characterization in COMSOL” (available from http://srdjancomsol.weebly.com , 2011).
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  37. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng.93, 429–441 (1946).
  38. C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A81(3), 033412 (2010). [CrossRef]
  39. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20(5), 1307–1314 (1965).
  40. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP64(6), 1191–1194 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited