OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26326–26336

Formation of chiral fields in a symmetric environment

Martin Schäferling, Xinghui Yin, and Harald Giessen  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26326-26336 (2012)
http://dx.doi.org/10.1364/OE.20.026326


View Full Text Article

Enhanced HTML    Acrobat PDF (1431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chiral fields, i. e., electromagnetic fields with nonvanishing optical chirality, can occur next to symmetric nanostructures without geometrical chirality illuminated with linearly polarized light at normal incidence. A simple dipole model is utilized to explain this behavior theoretically. Illuminated with circularly polarized light, the chiral near-fields are still dominated by the distributions found for the linear polarization but show additional features due to the optical chirality of the incident light. Rotating the angle of linear polarization introduces more subtle changes to the distribution of optical chirality. Using our findings, we propose a novel scheme to obtain chiroptical far-field response using linearly polarized light, which could be utilized for applications such as optical enantiomer sensing.

© 2012 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Physical Optics

History
Original Manuscript: September 20, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 1, 2012
Published: November 7, 2012

Citation
Martin Schäferling, Xinghui Yin, and Harald Giessen, "Formation of chiral fields in a symmetric environment," Opt. Express 20, 26326-26336 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004), 2nd ed. [CrossRef]
  2. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14, 950–955 (2006). [CrossRef] [PubMed]
  3. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011). [CrossRef] [PubMed]
  4. A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011). [CrossRef]
  5. Z. Fan and A. O. Govorov, “Chiral nanocrystals: plasmonic spectra and circular dichroism.” Nano Lett.12, 3283–3289 (2012). [CrossRef] [PubMed]
  6. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012). [CrossRef]
  7. A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012). [CrossRef]
  8. A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003). [CrossRef] [PubMed]
  9. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005). [CrossRef] [PubMed]
  10. E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009). [CrossRef] [PubMed]
  11. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009). [CrossRef] [PubMed]
  12. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006). [CrossRef] [PubMed]
  13. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007). [CrossRef] [PubMed]
  14. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34, 2501–2503 (2009). [CrossRef] [PubMed]
  15. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009). [CrossRef]
  16. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010). [CrossRef] [PubMed]
  17. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35, 1593–1596 (2010). [CrossRef] [PubMed]
  18. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011). [CrossRef]
  19. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011). [CrossRef] [PubMed]
  20. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012). [CrossRef] [PubMed]
  21. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  22. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009). [CrossRef] [PubMed]
  23. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011). [CrossRef]
  24. A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011). [CrossRef]
  25. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012). [CrossRef] [PubMed]
  26. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012). [CrossRef]
  27. X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012). [CrossRef]
  28. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010). [CrossRef] [PubMed]
  29. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010). [CrossRef] [PubMed]
  30. J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011). [CrossRef] [PubMed]
  31. A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C115, 7914–7923 (2011). [CrossRef]
  32. V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011). [CrossRef] [PubMed]
  33. N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012). [CrossRef] [PubMed]
  34. A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.” Chem. Phys. Chem.13, 2551–2560 (2012). [CrossRef] [PubMed]
  35. D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys.5, 696–674 (1964). [CrossRef]
  36. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104, 163901 (2010). [CrossRef] [PubMed]
  37. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.” Science332, 333–336 (2011). [CrossRef] [PubMed]
  38. K. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83, 021803 (2011). [CrossRef]
  39. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys98, 011101 (2005). [CrossRef]
  40. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007). [CrossRef]
  41. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  42. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011). [CrossRef] [PubMed]
  43. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012). [CrossRef]
  44. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36, 2278–2280 (2011). [CrossRef] [PubMed]
  45. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011). [CrossRef]
  46. E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012). [CrossRef] [PubMed]
  47. S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005). [CrossRef]
  48. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011). [CrossRef] [PubMed]
  49. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009). [CrossRef]
  50. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009). [CrossRef]
  51. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011). [CrossRef] [PubMed]
  52. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011). [CrossRef]
  53. J. D. Jackson, Classical Electrodynamics (Wiley-VCH, 1998), 3rd ed.
  54. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  55. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010). [CrossRef] [PubMed]
  56. N. Berova, K. Nakanishi, and R. W. Woody, eds., Circular Dichroism: Principles and Applications (Wiley-VCH, 2000), 2nd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited