OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26337–26344

Sideband spectroscopy and dispersion measurement in microcavities

Jiang Li, Hansuek Lee, Ki Youl Yang, and Kerry J. Vahala  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26337-26344 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The measurement of dispersion and its control have become important considerations in nonlinear devices based on microcavities. A sideband technique is applied here to accurately measure dispersion in a microcavity resulting from both geometrical and material contributions. Moreover, by combining the method with finite element simulations, we show that mapping of spectral lines to their corresponding transverse mode families is possible. The method is applicable for high-Q, micro-cavities having microwave rate free spectral range and has a relative precision of 5.5 × 10−6 for a 2 mm disk cavity with FSR of 32.9382 GHz and Q of 150 milllion.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(130.3120) Integrated optics : Integrated optics devices
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Integrated Optics

Original Manuscript: September 17, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 1, 2012
Published: November 7, 2012

Jiang Li, Hansuek Lee, Ki Youl Yang, and Kerry J. Vahala, "Sideband spectroscopy and dispersion measurement in microcavities," Opt. Express 20, 26337-26344 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. A. B. Matkso and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-Part I: Basics,” IEEE J. Quantum Electron.12, 3–14 (2006). [CrossRef]
  3. V. S. Ilchenko and A. B. Matkso, “Optical resonators with whispering-gallery modes-Part II: Applications,” IEEE J. Quantum Electron.12, 15–32 (2006). [CrossRef]
  4. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature443, 671–674 (2006). [CrossRef] [PubMed]
  5. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008). [CrossRef] [PubMed]
  7. T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A.108, 5976–5979 (2011). [CrossRef] [PubMed]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science322, 555–559 (2011). [CrossRef]
  9. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett.35, 2822–2824 (2010). [CrossRef] [PubMed]
  10. H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon.6, 369–373 (2012). [CrossRef]
  11. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express20, 20170–20180, (2012). [CrossRef] [PubMed]
  12. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon.6, 480–487 (2012). [CrossRef]
  13. I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102, 043902 (2009). [CrossRef] [PubMed]
  14. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.102, 113601 (2009). [CrossRef] [PubMed]
  15. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137, 393–397 (1989). [CrossRef]
  16. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23247–249 (1998). [CrossRef]
  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  18. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804(R) (2004). [CrossRef]
  19. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011). [CrossRef]
  20. M. J. Thorpe, R. J. Jones, K. D. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express13, 882–888 (2005). [CrossRef] [PubMed]
  21. A. Schliesser, C. Gohle, T. Udem, and T. W. Hansch, “Complete characterization of a broadband high-finesse cavity using an optical frequency comb,” Opt. Express14, 5975–5983 (2006). [CrossRef] [PubMed]
  22. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009). [CrossRef]
  23. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008). [CrossRef] [PubMed]
  24. R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A37, 1802–1805 (1988). [CrossRef] [PubMed]
  25. J. Li, H. Lee, T. Chen, O. Painter, and K. Vahala, “Chip-based Brillouin lasers as spectral purifiers for photonic systems,” arXiv:1201.4212 (2011).
  26. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000). [CrossRef] [PubMed]
  27. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003). [CrossRef] [PubMed]
  28. M. Oxborrow, “Traceable 2-d finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech.55, 1209–1218 (2007). [CrossRef]
  29. O. Arcizet, A. Schliesser, P. DelHaye, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation in monolithic microresonators,” in Practical Applications of Microresonators in Optics and Photonics, ed. A. B. Matsko, (CRC Press, 2009), Ch. 11.
  30. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited