OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26363–26372

Mode area scaling with all-solid photonic bandgap fibers

Fanting Kong, Kunimasa Saitoh, Devon Mcclane, Thomas Hawkins, Paul Foy, Guancheng Gu, and Liang Dong  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26363-26372 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There are still very strong interests for power scaling in high power fiber lasers for a wide range of applications in medical, industry, defense and science. In many of these lasers, fiber nonlinearities are the main limits to further scaling. Although numerous specific techniques have studied for the suppression of a wide range of nonlinearities, the fundamental solution is to scale mode areas in fibers while maintaining sufficient single mode operation. Here the key problem is that more modes are supported once physical dimensions of waveguides are increased. The key to solve this problem is to look for fiber designs with significant higher order mode suppression. In conventional waveguides, all modes are increasingly guided in the center of the waveguides when waveguide dimensions are increased. It is hard to couple a mode out in order to suppress its propagation, which severely limits their scalability. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses. In addition, the all-solid nature of the fiber makes it easily spliced to other fibers. In this paper, we will show for the first time that all-solid photonic bandgap fibers with effective mode area of ~920μm2 can be made with excellent higher order mode suppression.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 7, 2012
Revised Manuscript: October 8, 2012
Manuscript Accepted: October 15, 2012
Published: November 7, 2012

Fanting Kong, Kunimasa Saitoh, Devon Mcclane, Thomas Hawkins, Paul Foy, Guancheng Gu, and Liang Dong, "Mode area scaling with all-solid photonic bandgap fibers," Opt. Express 20, 26363-26372 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-µJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378–380 (1997). [CrossRef] [PubMed]
  2. C. D. Brooks and F. Teodoro, “Multi-MW peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. (Berl.) 89, 111119 (2006).
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  4. P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006). [CrossRef]
  5. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef] [PubMed]
  6. J. M. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005). [CrossRef] [PubMed]
  7. D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “33μm core effectively single-mode chirally-coupled-core fiber laser at 1064nm, ” Proc. of OFC (2008) paper OWU2.
  8. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009). [CrossRef]
  9. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009). [CrossRef] [PubMed]
  10. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultra-large modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006). [CrossRef] [PubMed]
  11. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007). [CrossRef] [PubMed]
  12. J. Nicholson, “Higher-order-mode fiber amplifiers,” Proc. of LS&C (2010) paper LSWD1.
  13. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-microm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008). [CrossRef] [PubMed]
  14. K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010). [CrossRef]
  15. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012). [CrossRef] [PubMed]
  16. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012). [CrossRef] [PubMed]
  17. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009). [CrossRef] [PubMed]
  18. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008). [CrossRef] [PubMed]
  19. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005). [CrossRef] [PubMed]
  20. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005). [CrossRef] [PubMed]
  21. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006). [CrossRef] [PubMed]
  22. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-lick onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited