OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26434–26440

Multi-wavelength Gratings formed via cascaded Stimulated Brillouin Scattering

Thomas F. S. Büttner, Irina V. Kabakova, Darren D. Hudson, Ravi Pant, Enbang Li, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26434-26440 (2012)
http://dx.doi.org/10.1364/OE.20.026434


View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the experimental observation of multi-wavelength fiber Bragg gratings in As2Se3 fiber. The gratings are internally written via two-photon absorption of 1550 nm pump light and its first and second order Stokes waves generated by cascaded stimulated Brillouin scattering (SBS). We demonstrate a parameter regime that allows for 4 dB grating enhancement by suppression of SBS.

© 2012 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5890) Nonlinear optics : Scattering, stimulated
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 20, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: October 31, 2012
Published: November 8, 2012

Citation
Thomas F. S. Büttner, Irina V. Kabakova, Darren D. Hudson, Ravi Pant, Enbang Li, and Benjamin J. Eggleton, "Multi-wavelength Gratings formed via cascaded Stimulated Brillouin Scattering," Opt. Express 20, 26434-26440 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).
  3. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996). [CrossRef]
  4. C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009). [CrossRef]
  5. G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008). [CrossRef]
  6. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in sub-wavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011). [CrossRef] [PubMed]
  7. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011). [CrossRef]
  8. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005). [CrossRef] [PubMed]
  9. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  10. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  11. R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation,” Opt. Lett.36(18), 3687–3689 (2011). [CrossRef] [PubMed]
  12. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express13(25), 10266–10271 (2005). [CrossRef] [PubMed]
  13. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994). [CrossRef]
  14. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978). [CrossRef]
  15. V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991). [CrossRef] [PubMed]
  16. K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  17. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976). [CrossRef]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  19. K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  21. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996). [CrossRef]
  22. M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008). [CrossRef]
  23. J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed fabry-perot filter-based multi-wavelength tunable laser,” J. Lightwave Technol.29(22), 3381–3386 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited