OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26464–26472

Gradient polymer network liquid crystal with a large refractive index change

Hongwen Ren, Su Xu, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26464-26472 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells’ movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: September 25, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 3, 2012
Published: November 9, 2012

Hongwen Ren, Su Xu, and Shin-Tson Wu, "Gradient polymer network liquid crystal with a large refractive index change," Opt. Express 20, 26464-26472 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992). [CrossRef]
  2. R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(6), 5824–5831 (1995). [CrossRef] [PubMed]
  3. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998). [CrossRef]
  4. H.-K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “Light-scattering-mode optical switching and image storage in polymer/liquid crystal composite films by means of photochemical phase transition,” Polymer (Guildf.)41(5), 1757–1763 (2000). [CrossRef]
  5. K. Hirabayashi, M. Wada, and C. Amano, “Compact optical-fiber variable attenuator arrays with polymer-network liquid crystals,” Appl. Opt.40(21), 3509–3517 (2001). [CrossRef] [PubMed]
  6. V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express10(17), 865–870 (2002). [CrossRef] [PubMed]
  7. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002). [CrossRef] [PubMed]
  8. H. Ren and S. T. Wu, “Tunable electronic lens using gradient polymer network liquid crystals,” Appl. Phys. Lett.82(1), 22–24 (2003). [CrossRef]
  9. H. Ren, Y. H. Fan, and S. T. Wu, “Prism grating using polymer-stabilized nematic liquid crystal,” Appl. Phys. Lett.82(19), 3168–3170 (2003). [CrossRef]
  10. H. S. Ji, J. H. Kim, and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett.28(13), 1147–1149 (2003). [CrossRef] [PubMed]
  11. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S.-T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004). [CrossRef]
  12. Y. H. Lin, J.-M. Yang, Y.-R. Lin, J. S.-C. Jeng, and C.-C. Liao, “A polarizer-free flexible and reflective electro-optical switch using dye-doped liquid crystal gels,” Opt. Express16, 1777–1785 (2008).
  13. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, “Bright color optical switching device by polymer network liquid crystal with a specular reflector,” Opt. Express19(14), 13097–13104 (2011). [CrossRef] [PubMed]
  14. J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem.21(22), 7870–7877 (2011). [CrossRef]
  15. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  16. J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express20(18), 20124–20129 (2012). [CrossRef] [PubMed]
  17. J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Display Technol.8(2), 87–90 (2012). [CrossRef]
  18. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express11(23), 3080–3086 (2003). [CrossRef] [PubMed]
  19. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and S. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000). [CrossRef]
  20. S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent switching of polymer stabilized cholesteric gratings,” Liq. Cryst.28(4), 637–641 (2001). [CrossRef]
  21. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt.23(21), 3911–3915 (1984). [CrossRef] [PubMed]
  22. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys.37(Part 2, No. 10B), L1251–L1253 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1181 KB)     
» Media 2: MOV (2631 KB)     
» Media 3: MOV (1219 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited