OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26486–26498

Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison

Jiangjun Zheng, Xiankai Sun, Ying Li, Menno Poot, Ali Dadgar, Norman Nan Shi, Wolfram H. P. Pernice, Hong X. Tang, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26486-26498 (2012)
http://dx.doi.org/10.1364/OE.20.026486


View Full Text Article

Enhanced HTML    Acrobat PDF (5079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design and experimental comparison of femtogram L3-nanobeam photonic crystal cavities for optomechanical studies. Two symmetric nanobeams are created by placing three air slots in a silicon photonic crystal slab where three holes are removed. The nanobeams’ mechanical frequencies are higher than 600 MHz with ultrasmall effective modal masses at approximately 20 femtograms. The optical quality factor (Q) is optimized up to 53,000. The optical and mechanical modes are dispersively coupled with a vacuum optomechanical coupling rate g0/2π exceeding 200 kHz. The anchor-loss-limited mechanical Q of the differential beam mode is evaluated to be greater than 10,000 for structures with ideally symmetric beams. The influence of variations on the air slot width and position is also investigated. The devices can be used as ultrasensitive sensors of mass, force, and displacement.

© 2012 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 31, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: November 1, 2012
Published: November 9, 2012

Citation
Jiangjun Zheng, Xiankai Sun, Ying Li, Menno Poot, Ali Dadgar, Norman Nan Shi, Wolfram H. P. Pernice, Hong X. Tang, and Chee Wei Wong, "Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison," Opt. Express 20, 26486-26498 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  2. I. Favero and K. Karrai, “Optomechanics of deformable optical devices,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]
  3. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]
  4. F. Marquardt, “Optomechanics: push towards the quantum limit,” Nat. Phys. 4(7), 513–514 (2008). [CrossRef]
  5. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012). [CrossRef] [PubMed]
  6. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011). [CrossRef] [PubMed]
  7. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011). [CrossRef] [PubMed]
  8. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6(9), 707–712 (2010). [CrossRef]
  9. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010). [CrossRef] [PubMed]
  10. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009). [CrossRef]
  11. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009). [CrossRef]
  12. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008). [CrossRef]
  13. I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004). [CrossRef] [PubMed]
  14. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010). [CrossRef] [PubMed]
  15. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011). [CrossRef] [PubMed]
  16. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3), 203–207 (2012). [CrossRef]
  17. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a resonant microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008). [CrossRef]
  18. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011). [CrossRef] [PubMed]
  19. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision far below the standard quantum limit,” Phys. Rev. A 82, 061804(R) (2010).
  20. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006). [CrossRef]
  21. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008). [CrossRef] [PubMed]
  22. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010). [CrossRef]
  23. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010). [CrossRef] [PubMed]
  24. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008). [CrossRef]
  25. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef] [PubMed]
  26. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010). [CrossRef] [PubMed]
  27. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  28. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011). [CrossRef] [PubMed]
  29. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  30. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  31. J. Zheng, Y. Li, M. S. Aras, A. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett. 100(21), 211908 (2012). [CrossRef]
  32. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010). [CrossRef]
  33. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106(20), 203902 (2011). [CrossRef] [PubMed]
  34. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012), doi: [CrossRef] [PubMed]
  35. D. Bindel and S. Govindjee, “Elastic PMLs for resonator anchor loss simulation,” Tech report UCB / SEMM-2005/01.
  36. U. Basu and A. K. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation,” Comput. Methods Appl. Mech. Eng. 192(11-12), 1337–1375 (2003). [CrossRef]
  37. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4(7), 445–450 (2009). [CrossRef] [PubMed]
  38. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007). [CrossRef] [PubMed]
  39. M. Poot and H. S. J. van der Zant, “Mechanical systems in the quantum regime,” Phys. Rep. 511(5), 273–335 (2012). [CrossRef]
  40. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  41. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef] [PubMed]
  42. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006). [CrossRef] [PubMed]
  43. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  44. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]
  45. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004). [CrossRef]
  46. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  47. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002). [CrossRef] [PubMed]
  48. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008). [CrossRef]
  49. COMSOL Group, http://www.comsol.com/
  50. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef] [PubMed]
  51. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002). [CrossRef] [PubMed]
  52. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004). [CrossRef]
  53. K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst. 9(1), 117–125 (2000). [CrossRef]
  54. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (650 KB)     
» Media 2: MOV (819 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited