OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26542–26547

Obstructive micro diffracting structures as an alternative to plasmonics nano slits for making efficient microlenses

Guy Vitrant, Soraya Zaiba, Benyamin Y. Vineeth, Timothe Kouriba, Omar Ziane, Olivier Stéphan, Jocelyne Bosson, and Patrice L. Baldeck  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26542-26547 (2012)
http://dx.doi.org/10.1364/OE.20.026542


View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Miniature optical components at the wavelength scale remain today a theoretically opened challenging problem of great technological interest. Appart from refractive micro-optics, plasmonics have been proposed to realize micro lenses with properly designed planar metallic nano-patterns. We show in this paper that efficient light focusing at the diffraction limit with higher transmission can be obtained with micro-structures much easier to fabricate than nano ones, such as a simple micro-slit studied here as an example. Optical properties are attributed to diffraction and a quantitative excellent agreement between experiment and theory is obtained.

© 2012 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.1960) Physical optics : Diffraction theory
(050.1965) Diffraction and gratings : Diffractive lenses
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 11, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: November 5, 2012
Published: November 12, 2012

Citation
Guy Vitrant, Soraya Zaiba, Benyamin Y. Vineeth, Timothe Kouriba, Omar Ziane, Olivier Stéphan, Jocelyne Bosson, and Patrice L. Baldeck, "Obstructive micro diffracting structures as an alternative to plasmonics nano slits for making efficient microlenses," Opt. Express 20, 26542-26547 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev, “Optical negative-index Metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  3. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008). [CrossRef] [PubMed]
  4. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009). [CrossRef] [PubMed]
  5. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express16(18), 14200–14212 (2008). [CrossRef] [PubMed]
  6. Y. Fu and X. Zhou, “Plasmonic lenses: a review,” Plasmonics5(3), 287–310 (2010). [CrossRef]
  7. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004). [CrossRef]
  8. L. Verslegers, B. Catrysse, Z. Yu, J. S. White, E. S. B. Brongersma, and S. M. L. Fan, “Planar lenses based on nanoscale slitsArrays in metallic film,” Nano Lett.9(1), 235–238 (2009).
  9. Q. Chen and D. R. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express18(14), 14788–14793 (2010). [CrossRef] [PubMed]
  10. S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev, “Metal nanoslit Lenses with polarization-selective design,” Opt. Lett.36(4), 451–453 (2011). [CrossRef] [PubMed]
  11. M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett.52(4), 979–981 (2010). [CrossRef]
  12. H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett.10(10), 4111–4116 (2010). [CrossRef] [PubMed]
  13. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a Lens,” Nano Lett.8(8), 2469–2472 (2008). [CrossRef] [PubMed]
  14. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010). [CrossRef] [PubMed]
  15. H. F. Talbot, “Facts relating to optical science,” Philos. Mag.9, 401–407 (1836).
  16. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express17(22), 19757–19762 (2009). [CrossRef] [PubMed]
  17. A. E. Çetin, K. Güven, and Ö. E. Müstecaplioğlu, “Active control of focal length and beam deflection in a metallic nanoslit array lens with multiple sources,” Opt. Lett.35(12), 1980–1982 (2010). [CrossRef] [PubMed]
  18. S. Zaiba, T. Kouriba, O. Ziane, O. Stéphan, J. Bosson, G. Vitrant, and P. L. Baldeck, “Metallic nanowires can lead to wavelength-scale microlenses and microlens arrays,” Opt. Express20(14), 15516–15521 (2012). [CrossRef] [PubMed]
  19. O.Ziane, S.Zaiba, T.Kouriba, J.Bosson, G. Vitrant, and P. L. Baldeck, “Cylindrical planar microlens based on diffraction of parallel metallic nanowires,” accepted for publication in J. Opt. Soc. Am. B.
  20. M. Born and E. Wolf, Principles of Optics, 7th ed (Pergamon, 1999), Chap. 8.
  21. J. A. C. Veerman, J. J. Rusch, and H. P. Urbach, “Calculation of the Rayleigh-Sommerfeld diffraction integral by exact integration of the fast oscillating factor,” J. Opt. Soc. Am. A22(4), 636–646 (2005). [CrossRef] [PubMed]
  22. L. Vurth, P. L. Baldeck, O. Stephan, and I. Grosu, “Fabrication of 3D metallic micro/nanostructures by two-photon absorption,” J. Optoelectron. Adv. Materials10, 2199–2204 (2008). [CrossRef]
  23. P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A: Pure Appl. Opt.11(11), 114024 (2009). [CrossRef]
  24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  25. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express16(26), 21271–21281 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited