OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26548–26558

Strongly modified spontaneous emission decay rate of silicon nanocrystals near semicontinuous gold films

Toshihiro Nakamura, Bishnu P. Tiwari, and Sadao Adachi  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26548-26558 (2012)
http://dx.doi.org/10.1364/OE.20.026548


View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the spontaneous emission decay rate of Si nanocrystals modified by thin semicontinuous gold films. It has been shown that the mean and standard deviation values of decay rate distribution obtained from the photo-emission decay curve analysis increase due to the deposition of semicontinuous gold films. These values are dependent on gold film thickness and emission wavelength. The observed results are well explained using a point-dipole decay rate model considering the effective dielectric functions of the gold films that exhibit peculiar structures in the localized surface plasmon resonance region.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons
(260.3800) Physical optics : Luminescence
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: September 12, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: October 30, 2012
Published: November 12, 2012

Citation
Toshihiro Nakamura, Bishnu P. Tiwari, and Sadao Adachi, "Strongly modified spontaneous emission decay rate of silicon nanocrystals near semicontinuous gold films," Opt. Express 20, 26548-26558 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode,” J. Mod. Opt.45, 661–699 (1998). [CrossRef]
  2. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984). [CrossRef]
  3. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]
  4. S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984). [CrossRef]
  5. Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009). [CrossRef] [PubMed]
  6. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010). [CrossRef]
  7. P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express18, 6360–6365 (2010). [CrossRef] [PubMed]
  8. A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).
  9. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010). [CrossRef] [PubMed]
  10. J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002). [CrossRef]
  11. E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006). [CrossRef]
  12. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005). [CrossRef] [PubMed]
  13. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006). [CrossRef] [PubMed]
  14. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006). [CrossRef]
  15. T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005). [CrossRef]
  16. S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006). [CrossRef]
  17. C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006). [CrossRef]
  18. P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987). [CrossRef]
  19. A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011). [CrossRef]
  20. C. P. Lindsey and G. D. Patterson, “Detailed comparison of the williams–watts and cole–davidson functions,” J. Chem. Phys.73, 3348–3357 (1980). [CrossRef]
  21. A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007). [CrossRef]
  22. Y. Kanemitsu, “Luminescence properties of nanometer-sized Si crystallites: Core and surface states,” Phys. Rev. B49, 16845–16848 (1994). [CrossRef]
  23. I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996). [CrossRef]
  24. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006). [CrossRef]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). [CrossRef]
  26. M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010). [CrossRef] [PubMed]
  27. D. W. Lynch and W. R. Hunter, in “Handbook of Optical Constants of Solid,”, E. D. Palik, ed. (Academic Press, 1985).
  28. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento20, 1–76 (1997). [CrossRef]
  29. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010). [CrossRef]
  30. T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt.50, 1453–1464 (2011). [CrossRef] [PubMed]
  31. T. Okamoto, in “Near-Field Optics and Surface Plasmon Polaritons,”, S. Kawata, ed. (Springer, New York, 2001), p. 98.
  32. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012). [CrossRef] [PubMed]
  33. A. Otto, in “Light Scattering in Solid IV,”, M. Cardona and G. Güntherodt, eds. (Springer, New York, 1984), p. 312.
  34. J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. theory,” Phys. Rev. B4, 271–280 (1971). [CrossRef]
  35. S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007). [CrossRef]
  36. R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys.37, 2775–2781 (1966). [CrossRef]
  37. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993). [CrossRef]
  38. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993). [CrossRef]
  39. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009). [CrossRef]
  40. T. Tamura and S. Adachi, “Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution,” J. Electrochem. Soc.154, H681–H686 (2007). [CrossRef]
  41. K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited