OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26559–26567

Fano-like resonance in symmetry-broken gold nanotube dimer

DaJian Wu, ShuMin Jiang, Ying Cheng, and XiaoJun Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26559-26567 (2012)
http://dx.doi.org/10.1364/OE.20.026559


View Full Text Article

Enhanced HTML    Acrobat PDF (2970 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum. The Fano dip shows a red-shift and becomes deep with the increase of the offset-value. In the strong coupling model of the SBGNT dimer, the coupling between two SBGNTs induces giant electric field enhancement at the gap of the dimer, which is much larger than that in the symmetry gold nanotube dimer. The SBGNT with larger offset-value exhibits stronger near-field at the “hot spot”.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 30, 2012
Revised Manuscript: November 6, 2012
Manuscript Accepted: November 6, 2012
Published: November 12, 2012

Citation
DaJian Wu, ShuMin Jiang, Ying Cheng, and XiaoJun Liu, "Fano-like resonance in symmetry-broken gold nanotube dimer," Opt. Express 20, 26559-26567 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical properties of Metal Clusters (Springer, 1995).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  3. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  4. M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimers,” Chem. Commun. (Camb.)47(13), 3769–3771 (2011). [CrossRef] [PubMed]
  5. Y. Y. Rao, Q. Tao, M. An, C. H. Rong, J. Dong, Y. R. Dai, and W. P. Qian, “Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals,” Langmuir27(21), 13308–13313 (2011). [CrossRef] [PubMed]
  6. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett.12(3), 1333–1339 (2012). [CrossRef] [PubMed]
  7. Q. Q. Su, X. Y. Ma, J. Dong, C. Y. Jiang, and W. P. Qian, “A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars,” ACS Appl. Mater. Interfaces3(6), 1873–1879 (2011). [CrossRef] [PubMed]
  8. Y. P. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys.125(12), 124708 (2006). [CrossRef] [PubMed]
  9. H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  10. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008). [CrossRef] [PubMed]
  11. O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of incomplete nanoshells: effect of local field irregularities on the far-field optical response,” J. Phys. Chem. C115(45), 22271–22275 (2011). [CrossRef]
  12. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  13. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009). [CrossRef] [PubMed]
  14. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  15. L. F. Niu, J. B. Zhang, Y. H. Fu, S. Kulkarni, and B. Luky Anchuk, “Fano resonance in dual-disk ring plasmonic nanostructures,” Opt. Express19(23), 22974–22981 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22974 . [CrossRef] [PubMed]
  16. O. Peña-Rodríguez and U. Pal, “Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators,” Nanoscale3(9), 3609–3612 (2011). [CrossRef] [PubMed]
  17. Z. Y. Fang, J. Y. Cai, Z. B. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011). [CrossRef] [PubMed]
  18. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010). [CrossRef] [PubMed]
  19. D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012). [CrossRef] [PubMed]
  20. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  21. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  22. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012). [CrossRef] [PubMed]
  23. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008). [CrossRef]
  24. B. F. Yun, Z. Y. Wang, G. H. Hu, and Y. P. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimers,” Opt. Commun.283(14), 2947–2952 (2010). [CrossRef]
  25. H. Q. Xu, H. J. Li, Z. M. Liu, S. X. Xie, X. Zhou, X. Peng, and X. K. Xu, “Effects of symmetry breaking on plasmon resonance in a noncoaxial nanotube and nanotube dimer,” J. Opt. Soc. Am. A28(8), 1662–1667 (2011). [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  27. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 1993).
  28. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009). [CrossRef] [PubMed]
  29. M. Wang, M. Cao, X. Chen, and N. Gu, “Subradiant plasmon modes in multilayer metal–dielectric nanoshells,” J. Phys. Chem. C115(43), 20920–20925 (2011). [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  31. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  32. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys.120(11), 5444–5454 (2004). [CrossRef] [PubMed]
  33. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett.36(9), 1542–1544 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-9-1542 . [CrossRef] [PubMed]
  34. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited