OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26681–26695

Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

Ginni Grover, Keith DeLuca, Sean Quirin, Jennifer DeLuca, and Rafael Piestun  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26681-26695 (2012)
http://dx.doi.org/10.1364/OE.20.026681


View Full Text Article

Enhanced HTML    Acrobat PDF (2153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm.

© 2012 OSA

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(110.1758) Imaging systems : Computational imaging
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Imaging Systems

History
Original Manuscript: August 6, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: November 5, 2012
Published: November 12, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Ginni Grover, Keith DeLuca, Sean Quirin, Jennifer DeLuca, and Rafael Piestun, "Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)," Opt. Express 20, 26681-26695 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26681


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Contributions to the theory of the microscope and microscopic observations (translated from German),” Archiv für Mikroskopische Anatomie 9, 413–468 (1873). [CrossRef]
  2. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008). [CrossRef] [PubMed]
  3. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008). [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  5. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  6. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  7. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008). [CrossRef] [PubMed]
  8. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008). [CrossRef] [PubMed]
  9. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  10. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008). [CrossRef] [PubMed]
  11. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009). [CrossRef] [PubMed]
  12. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  13. J. Tang, J. Akerboom, A. Vaziri, L. L. Looger, and C. V. Shank, “Near-isotropic 3D optical nanoscopy with photon-limited chromophores,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10068–10073 (2010). [CrossRef] [PubMed]
  14. D. Baddeley, M. B. Cannell, and C. Soeller, “Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil,” Nano Research 4(6), 589–598 (2011). [CrossRef]
  15. D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8(4), 353–359 (2011). [CrossRef] [PubMed]
  16. S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011). [CrossRef] [PubMed]
  17. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011). [CrossRef] [PubMed]
  18. G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35(19), 3306–3308 (2010). [CrossRef] [PubMed]
  19. R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002). [CrossRef]
  20. S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012). [CrossRef] [PubMed]
  21. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008). [CrossRef] [PubMed]
  22. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008). [CrossRef] [PubMed]
  23. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010). [CrossRef] [PubMed]
  24. M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010). [CrossRef] [PubMed]
  25. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31(2), 181–183 (2006). [CrossRef] [PubMed]
  26. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011). [CrossRef] [PubMed]
  27. S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, “A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking,” Proc. SPIE64430D, 64430D-7 (2007). [CrossRef]
  28. Y. Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distributions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), R50–R53 (1996). [CrossRef] [PubMed]
  29. G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt. 40(1), 73–87 (1993). [CrossRef]
  30. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011). [CrossRef] [PubMed]
  31. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. VAN DE Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010). [CrossRef] [PubMed]
  32. A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in Proceedings of 18th International Conference on Pattern Recognition (IEEE Computer Society, 2006) pp. 850–855.
  33. A. Egner and S. W. Hell, “Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch,” in Handbook of Biological Confocal Microscopy, J. B. Pawley ed., Third Ed. (Springer Science, New York, 2003), pp. 404–413, Chap. 20.
  34. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007). [CrossRef] [PubMed]
  35. J. F. Kenney and E. S. Keeping, “The distribution of the standard deviation,” in Mathematics of Statistics 2nd ed. (Van Nostrand, 1951), Vol. Part 2, pp. 170–173.
  36. L. Novotny and B. Hecht, “Chapter 4,” in Principles of Nano-Optics (Cambridge University Press, 2006).
  37. M. Newberry, “CCD camera gain measurement,” http://www.mirametrics.com/tech_note_ccdgain.htm .
  38. M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods 4(4), 319–321 (2007). [PubMed]
  39. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010). [CrossRef] [PubMed]
  40. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (747 KB)     
» Media 2: MOV (505 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited