OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26704–26713

When does single-mode lasing become a condensation phenomenon?

Baruch Fischer and Rafi Weill  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26704-26713 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a generic route to classical light condensation (LC) in linear photonic mode systems, such as cw lasers, with different grounds from regular Bose-Einstein condensation (BEC). LC is based on weighting the modes in a noisy environment (spontaneous emission, etc.) in a loss-gain scale, rather than in photon energy. It is characterized by a sharp transition from a multi- to single-mode oscillation. The study uses a linear multivariate Langevin formulation which gives a mode occupation hierarchy that functions like Bose-Einstein statistics. Condensation occurs when the spectral filtering has near the lowest-loss mode a power law dependence with exponent smaller than 1. We then discuss how condensation can occur in photon systems, its relation to lasing and the difficulties to observe regular photon-BEC in laser cavities. We raise the possibility that experiments on photon condensation in optical cavities fall in a classical LC or lasing category rather than being a thermal-quantum BEC phenomenon.

© 2012 OSA

OCIS Codes
(270.3430) Quantum optics : Laser theory
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Quantum Optics

Original Manuscript: July 3, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 22, 2012
Published: November 12, 2012

Baruch Fischer and Rafi Weill, "When does single-mode lasing become a condensation phenomenon?," Opt. Express 20, 26704-26713 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of bose-einstein condensation in a dilute atomic vapor,” Science269(5221), 198–201 (1995). [CrossRef] [PubMed]
  2. A. J. Leggett, “Bose-Einstein condensation in the alkali gases: Some fundamental concepts,” Rev. Mod. Phys.73(2), 307–356 (2001). [CrossRef]
  3. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature468(7323), 545–548 (2010). [CrossRef] [PubMed]
  4. J. Klaers, F. Vewinger, and M. Weitz, “Thermalization of a two-dimensional photonic gas in a white wall photon box,” Nat. Phys.6(7), 512–515 (2010). [CrossRef]
  5. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science298(5591), 199–202 (2002). [CrossRef] [PubMed]
  6. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  7. S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hillebrands, and A. N. Slavin, “Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping,” Nature443(7110), 430–433 (2006). [CrossRef] [PubMed]
  8. R. Weill, B. Levit, A. Bekker, O. Gat, and B. Fischer, “Laser light condensate: experimental demonstration of light-mode condensation in actively mode locked laser,” Opt. Express18(16), 16520–16525 (2010). [CrossRef] [PubMed]
  9. R. Weill, B. Fischer, and O. Gat, “Light-mode condensation in actively-mode-locked lasers,” Phys. Rev. Lett.104(17), 173901 (2010). [CrossRef] [PubMed]
  10. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, “Condensation of classical nonlinear waves,” Phys. Rev. Lett.95(26), 263901 (2005). [CrossRef] [PubMed]
  11. C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, and G. Ruocco, “Condensation in disordered lasers: theory, 3D+1 simulations, and experiments,” Phys. Rev. Lett.101(14), 143901 (2008). [CrossRef] [PubMed]
  12. A. Fratalocchi, “Mode-locked lasers: light condensation,” Nat. Photonics4(8), 502–503 (2010). [CrossRef]
  13. A. Gordon and B. Fischer, “Phase transition theory of many-mode ordering and pulse formation in lasers,” Phys. Rev. Lett.89(10), 103901 (2002). [CrossRef] [PubMed]
  14. O. Gat, A. Gordon, and B. Fischer, “Solution of a statistical mechanics model for pulse formation in lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70, 046108 (2004). [CrossRef] [PubMed]
  15. O. Gat, A. Gordon, and B. Fischer, “Light-mode locking: a new class of solvable statistical physics systems,” New J. Phys.7, 151 (2005). [CrossRef]
  16. B. Vodonos, R. Weill, A. Gordon, A. Bekker, V. Smulakovsky, O. Gat, and B. Fischer, “Formation and annihilation of laser light pulse quanta in a thermodynamic-like pathway,” Phys. Rev. Lett.93(15), 153901 (2004). [CrossRef] [PubMed]
  17. A. Gordon, B. Vodonos, V. Smulakovski, and B. Fischer, “Melting and freezing of light pulses and modes in mode-locked lasers,” Opt. Express11(25), 3418–3424 (2003). [CrossRef] [PubMed]
  18. A. Rosen, R. Weill, B. Levit, V. Smulakovsky, A. Bekker, and B. Fischer, “Experimental observation of critical phenomena in a laser light system,” Phys. Rev. Lett.105(1), 013905 (2010). [CrossRef] [PubMed]
  19. R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical behavior of light in mode-locked lasers,” Phys. Rev. Lett.95(1), 013903 (2005). [CrossRef] [PubMed]
  20. V. Bagnato and D. Kleppner, “Bose-Einstein condensation in low-dimensional traps,” Phys. Rev. A44(11), 7439–7441 (1991). [CrossRef] [PubMed]
  21. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  22. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993), Ch.6.
  23. A. E. Siegman, Lasers (University Science Books, 1986).
  24. D. A. Sawicki and R. S. Knox, “Universal relationship between optical emission and absorption of complex systems: An alternative approach,” Phys. Rev. A54(6), 4837–4841 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited