OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26714–26724

High efficiency, high selectivity ultra-thin resonant diffractive elements

Svetlen Tonchev, Thomas Kämpfe, and Olivier Parriaux  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26714-26724 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant diffractive elements as the association of a surface corrugation with a surface wave exhibit boosted diffraction efficiency and high selectivity properties under the effect of ultra-shallow subwavelength surface reliefs. This is demonstrated by four examples of resonant functional structures made of very different material systems over the optical spectrum. All four structures are fabricated by slow wet etching as the inherent lateral broadening in corrugations of very small aspect ratio can be neglected.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(310.0310) Thin films : Thin films
(050.5745) Diffraction and gratings : Resonance domain
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 14, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 15, 2012
Published: November 12, 2012

Svetlen Tonchev, Thomas Kämpfe, and Olivier Parriaux, "High efficiency, high selectivity ultra-thin resonant diffractive elements," Opt. Express 20, 26714-26724 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989). [CrossRef]
  2. M. Flury, A. V. Tishchenko, and O. Parriaux, “The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings,” J. Lightwave Technol.25(7), 1870–1878 (2007). [CrossRef]
  3. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  4. C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, “Silicon-based transmissive diffractive optical element,” Opt. Lett.28(14), 1260–1262 (2003). [CrossRef] [PubMed]
  5. A. Talneau, F. Lemarchand, A. L. Fehrembach, J. Girard, and A. Sentenac, “Deeply-etched two-dimensional grating in a Ta2O5 guiding layer for very narrow spectral filtering,” Microelectron. Eng.87(5-8), 1360–1362 (2010). [CrossRef]
  6. D. Harvey, “Modern Analytical Chemistry,” Publisher: McGraw-Hill Companies, Inc., Science/Engineering/Math, ISBN: 0072375477, edition 2000.
  7. L. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, 1970).
  8. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985). [CrossRef]
  9. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985). [CrossRef]
  10. D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensors,” Sens. Actuators B Chem.159(1), 27–32 (2011). [CrossRef]
  11. N. Destouches, J.-C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express14(26), 12613–12622 (2006). [CrossRef] [PubMed]
  12. O. Parriaux, A. V. Tishchenko, N. M. Lyndin, and J. F. Bisson, US patent 7778305, 2010.
  13. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett.32(13), 1824–1826 (2007). [CrossRef] [PubMed]
  14. P. Muys and M. Youn, “Mathematical modeling of laser sublimation cutting,” Laser Phys.18(4), 495–499 (2008). [CrossRef]
  15. R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Proc.12, 21–30 (2011). [CrossRef]
  16. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976). [CrossRef]
  17. Y. Jourlin, S. Tonchev, A. V. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express17(14), 12155–12166 (2009). [CrossRef] [PubMed]
  18. I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron.34(6), 1054–1060 (1998). [CrossRef]
  19. F. Garrelie, J.-P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011). [CrossRef] [PubMed]
  20. D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” Riken Review no. 43, focused on 2nd International Symposium on Laser Precision Microfabrication (LPM2001), Jan. 2002.
  21. H. Ridaoui, F. Wieder, A. Ponche, and O. Soppera, “Direct ArF laser photopatterning of metal oxide nanostructures prepared by the sol-gel route,” Nanotechnology21(6), 065303 (2010). [CrossRef] [PubMed]
  22. Y. Jourlin, S. Tonchev, A. V. Tishchenko, C. Pédrix, O. Parriaux, D. Jamon, and F. Lacour, “Wideband, wide angular spectrum resonant reflection by mode coalescence in dual-mode slab waveguide,” presented at the 8th EOS Topical Meeting on Diffractive Optics, Delft, Netherlands, 27 Feb.-1 Mar. 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited