OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26766–26777

Refractive index profiling of an optical waveguide from the determination of the effective index with measured differential fields

Wan-Shao Tsai, San-Yu Ting, and Pei-Kuen Wei  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26766-26777 (2012)
http://dx.doi.org/10.1364/OE.20.026766


View Full Text Article

Enhanced HTML    Acrobat PDF (2183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The evanescent tails of a guiding mode as well as its first and second derivatives were measured by a modified end-fire coupling method. The effective index of the waveguide can be obtained by simultaneously fitting these three fields using single parameter. Combined with an inverse calculation algorithm, the fields with fitted evanescent tails showed great improvement in the refractive index profiling of the optical waveguide, especially at the substrate region. Single-mode optical fibers and planar waveguides of proton-exchanged (PE) and titanium-indiffusion (Ti:LiNbO3) on lithium niobate substrates with different refractive index profiles were measured for the demonstration.

© 2012 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3190) Image processing : Inverse problems
(130.3730) Integrated optics : Lithium niobate
(230.7390) Optical devices : Waveguides, planar
(290.3030) Scattering : Index measurements

ToC Category:
Integrated Optics

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: October 29, 2012
Published: November 13, 2012

Citation
Wan-Shao Tsai, San-Yu Ting, and Pei-Kuen Wei, "Refractive index profiling of an optical waveguide from the determination of the effective index with measured differential fields," Opt. Express 20, 26766-26777 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. E. Martin, “Refractive index profile measurements of diffused optical waveguides,” Appl. Opt.13(9), 2112–2116 (1974). [CrossRef] [PubMed]
  2. R. Oven, “Extraction of phase derivative data from interferometer images using a continuous wavelet transform to determine two-dimensional refractive index profiles,” Appl. Opt.49(22), 4228–4236 (2010). [CrossRef] [PubMed]
  3. Y. Dattner and O. Yadid-Pecht, “Analysis of the effective refractive index of silicon waveguides through the constructive and destructive interference in a Mach-Zehnder interferometer,” IEEE Photonics J.3(6), 1123–1132 (2011). [CrossRef]
  4. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt.15(1), 151–155 (1976). [CrossRef] [PubMed]
  5. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol.3(2), 385–391 (1985). [CrossRef]
  6. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt.33, 127–143 (1986).
  7. L. Wang and B.-X. Xiang, “Planar waveguides in magnesium doped stoichiometric LiNbO3 crystals formed by MeV oxygen ion implantations,” Nucl. Instrum. Meth. Phys. Res. Sect. B272, 121–124 (2012). [CrossRef]
  8. W.-S. Tsai, S.-C. Piao, and P.-K. Wei, “Refractive index measurement of optical waveguides using modified end-fire coupling method,” Opt. Lett.36(11), 2008–2010 (2011). [CrossRef] [PubMed]
  9. X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun.281(6), 1529–1533 (2008). [CrossRef]
  10. F. Caccavale, F. Segato, I. Mansour, and M. Gianesin, “A finite differences method for the reconstruction of refractive index profiles from near-field measurements,” J. Lightwave Technol.16(7), 1348–1353 (1998). [CrossRef]
  11. G. L. Yip, P. C. Noutsios, and L. Chen, “Improved propagation-mode near-field method for refractive-index profiling of optical waveguides,” Appl. Opt.35(12), 2060–2068 (1996). [CrossRef] [PubMed]
  12. D. Brooks and S. Ruschin, “Improved near-field method for refractive index measurement of optical waveguides,” IEEE Photon. Technol. Lett.8(2), 254–256 (1996). [CrossRef]
  13. S. Barai and A. Sharma, “Inverse algorithm with built-in spatial filter to obtain the 2-D refractive index profile of optical waveguides from the propagating mode near-field profile,” J. Lightwave Technol.27(11), 1514–1521 (2009). [CrossRef]
  14. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured nearfield intenstity,” J. Lightwave Technol.14(3), 423–428 (1996). [CrossRef]
  15. J. Helms, J. Schmidtchen, B. Schüppert, and K. Petermann, “Error analysis for refractive-index profile determination from near-field measurements,” J. Lightwave Technol.8(5), 625–633 (1990). [CrossRef]
  16. W.-S. Tsai, W.-S. Wang, and P.-K. Wei, “Two-dimensional refractive index profiling by using differential near-field scanning optical microscopy,” Appl. Phys. Lett.91(6), 061123 (2007). [CrossRef]
  17. D. P. Tsai, C. W. Yang, S.-Z. Lo, and H. E. Jackson, “Imaging local index variations in an optical waveguide using a tapping mode near-field scanning optical microscope,” Appl. Phys. Lett.75(8), 1039–1041 (1999). [CrossRef]
  18. A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett.80(13), 2239–2241 (2002). [CrossRef]
  19. C. Yeh and F. I. Shimabukuro, “Optical fibers,” in The Essence of Dielectric Waveguides (Springer, 2008).
  20. R. G. Hunsperger, “Theory of optical waveguides,” in Integrated Optics: Theory and Technology (Springer, 2009).
  21. P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994). [CrossRef]
  22. M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc.135, 85–91 (1988).
  23. C.-C. Wei, P.-K. Wei, and W. Fann, “Direct measurements of the true vibrational amplitudes in shear force microscopy,” Appl. Phys. Lett.67(26), 3835–3837 (1995). [CrossRef]
  24. A. Yi-Yan, “Index instabilities in protonexchanged LiNbO3 waveguides,” Appl. Phys. Lett.42(8), 633–635 (1983). [CrossRef]
  25. I. Fatadin, D. Ives, and M. Wicks, “Accurate magnified near-field measurement of optical waveguides using a calibrated CCD camera,” J. Lightwave Technol.24(12), 5067–5074 (2006). [CrossRef]
  26. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys.78(9), 5345–5350 (1995). [CrossRef]
  27. Y. Tomita, M. Sugimoto, and K. Eda, “Direct bonding of LiNbO3 single crystals for optical waveguides,” Appl. Phys. Lett.66(12), 1484–1485 (1995). [CrossRef]
  28. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited