OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26798–26805

Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture

Marzieh Pournoury, Hesam Edin Arabi, and Kyunghwan Oh  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26798-26805 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strong polarization dependence in the optical transmission through a bull’s eye with a central elliptical aperture in a thin Au film is analyzed numerically by finite difference time domain (FDTD) method. Focusing on the impacts of the structural anisotropy, detailed investigation of polarization dependent enhanced optical transmission (EOT) of light is discussed in terms of the resonance intensity variations caused by the incident light polarization and the geometrical parameters of bull’s eye. We found that the light polarized along the minor axis of the elliptic aperture has significantly larger EOT by more than three orders of magnitude than the other orthogonal polarization, which can be further utilized in polarized EOT devices.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Diffraction and Gratings

Original Manuscript: August 2, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 17, 2012
Published: November 13, 2012

Marzieh Pournoury, Hesam Edin Arabi, and Kyunghwan Oh, "Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture," Opt. Express 20, 26798-26805 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no . [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  5. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ . [CrossRef]
  6. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 . [CrossRef]
  7. N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 . [CrossRef]
  8. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009). [CrossRef]
  9. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008). [CrossRef] [PubMed]
  10. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008). [CrossRef]
  11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008). [CrossRef] [PubMed]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 . [CrossRef] [PubMed]
  13. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010). [CrossRef] [PubMed]
  14. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003). [CrossRef] [PubMed]
  15. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006). [CrossRef]
  16. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011). [CrossRef]
  17. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004). [CrossRef] [PubMed]
  18. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004). [CrossRef]
  20. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express16(8), 5832–5837 (2008). [CrossRef] [PubMed]
  21. S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt.50(31), G104–G112 (2011). [CrossRef] [PubMed]
  22. T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’ spiral grooves,” Opt. Express14(13), 6285–6290 (2006). [CrossRef] [PubMed]
  23. FDTD Lumerical Solutions Inc, www.lumerical.com .
  24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  25. M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005). [CrossRef]
  26. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001). [CrossRef]
  27. A. R. Zakharian, M. Mansuripur, and J. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express12(12), 2631–2648 (2004). [CrossRef] [PubMed]
  28. V. Halté, A. Benabbas, and J. Y. Bigot, “Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals,” Opt. Express14(7), 2909–2920 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited