OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26828–26836

Manipulating dispersive wave generation by anomalous self-steepening effect in metamaterials

Yuanjiang Xiang, Jipeng Wu, Xiaoyu Dai, Shuangchun Wen, Jun Guo, and Qingkai Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26828-26836 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical investigation of dispersive wave (DW) generation in nonlinear metamaterials (MMs). The role of the anomalous self-steepening (SS) effect, which can be either positive or negative, and the negative SS parameter can have a very large value compared to an ordinary positive-index material, in DW generation is particularly identified. It is demonstrated that the SS effect exerts a great impact on the peak power while has little effect on the frequency shift of DW. For positive third-order dispersion (TOD), the negative SS broadens the pulse spectrum and weakens the DW’s peak power significantly, opposite to the case of positive SS. For negative TOD, however, the negative SS narrows the pulse spectrum and enhances the DW’s peak power, also opposite to the case of positive SS. The results suggest that the DW generation in nonlinear MMs can be manipulated by SS effect to a large extent.

© 2012 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 10, 2012
Revised Manuscript: November 1, 2012
Manuscript Accepted: November 6, 2012
Published: November 13, 2012

Yuanjiang Xiang, Jipeng Wu, Xiaoyu Dai, Shuangchun Wen, Jun Guo, and Qingkai Wang, "Manipulating dispersive wave generation by anomalous self-steepening effect in metamaterials," Opt. Express 20, 26828-26836 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (San Diego, Academic, 2001).
  2. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  3. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett.95, 213902 (2005). [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phy.78, 1135–1175 (2006). [CrossRef]
  5. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12, 124–135 (2004). [CrossRef] [PubMed]
  6. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A79, 023824 (2009). [CrossRef]
  7. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effects of higher-order dispersion on resonant dispersive waves emitted by solitons,” Opt. Lett.34, 2072–2074 (2009). [CrossRef] [PubMed]
  8. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Perturbation of higher-order solitons by fourth-order dispersion in optical fibers,” Opt. Commun.282, 3798–3803 (2009). [CrossRef]
  9. S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010). [CrossRef]
  10. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett.88, 173901 (2002). [CrossRef] [PubMed]
  11. G. Q. Chang, L. J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express19, 6635–6647 (2011). [CrossRef] [PubMed]
  12. D. J. Lei, H. Dong, S. C. Wen, and H. Yang, “Manipulating dispersive wave generation by frequency chirp in photonic crystal fibers,” J. Lightwave. Technol.27, 4501–4507 (2009). [CrossRef]
  13. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007). [CrossRef]
  14. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  15. N. I. Zheludev, “The road ahead for metamaterials,” Science328, 582–583 (2010). [CrossRef] [PubMed]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  17. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffaction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  18. W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B72, 193101 (2005). [CrossRef]
  19. P. A. Belov and C. R. Simovski, “Subwavelength metallic waveguides loaded by uniaxial resonant scatterers,” Phys. Rev. E72, 036618 (2005). [CrossRef]
  20. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propagat. Lett.1, 10–13 (2002). [CrossRef]
  21. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  22. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007). [CrossRef]
  23. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91, 037401 (2003). [CrossRef] [PubMed]
  24. M. Lapine, M. Gorkunov, and K. H. Ringhofer, “Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements,” Phys. Rev. E67, 065601 (2003). [CrossRef]
  25. A. D. Boardman, O. Hess, R. C. Mitchell-Thomas, Y. G. Rapoport, and L. Velasco, “Temporal solitons in magnetooptic and metamaterial waveguides,” Photonics Nanostruct.8, 228–243 (2010). [CrossRef]
  26. I. Kourakis and P. K. Shukla, “Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials,” Phys. Rev. E72, 016626 (2005). [CrossRef]
  27. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett.95, 013902 (2005). [CrossRef] [PubMed]
  28. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A.A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B69, 165112 (2004). [CrossRef]
  29. S. C. Wen, Y. J. Xiang, X. Y. Dai, Z. X. Tang, W. H. Su, and D. Y. Fan, “Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials,” Phys. Rev. A75, 033815 (2007). [CrossRef]
  30. S. C. Wen, Y. J. Xiang, W. H. Su, H. Y. Hu, X. Q. Fu, and D. Y. Fan, “Role of the anomalous self-steepening effect in modulation instability in negative-index material,” Opt. Express14, 1568–1575 (2006). [CrossRef] [PubMed]
  31. X. Y. Dai, Y. J. Xiang, S. C. Wen, and D. Y. Fan, “Modulation instability of copropagating light beams in nonlinear metamaterials,” J. Opt. Soc. Am. B26, 564–571 (2009). [CrossRef]
  32. Y. J. Xiang, S. C. Wen, X. Y. Dai, Z. X. Tang, W. H. Su, and D. Y. Fan, “Modulation instability induced by nonlinear dispersion in nonlinear metamaterials,” J. Opt. Soc. Am. B24, 3058–3063 (2007). [CrossRef]
  33. Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A84, 033815 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited