OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26837–26844

Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals

Chi-Huang Lin, Ru-Hsien Chiang, Shu-Hao Liu, Chie-Tong Kuo, and Chi-Yen Huang  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26837-26844 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work proposes a thermally rotatable grating that is based on hybrid-aligned cholesteric liquid crystals (HBA-cholesteric LCs). Experiments reveal that the HBA-cholesteric texture has a uniformly striped domain, which forms a grating, when the ratio of the cell gap to the helical pitch (d/p) is in the range of 2≤d/p≤3. The stripe direction of the HBA-cholesteric grating is predicted by the proposed vertically aligned LC layer model. The stripe direction of the HBA-cholesteric grating rotates continuously under thermal and electrical effects. Furthermore, the HBA-cholesteric grating has a larger rotational angle under the thermal effect (~101°) than under the electrical effect (~48°). Potential applications of the proposed thermally rotatable cholesteric grating for beam steering devices are emphasized.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Diffraction and Gratings

Original Manuscript: August 30, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 22, 2012
Published: November 13, 2012

Chi-Huang Lin, Ru-Hsien Chiang, Shu-Hao Liu, Chie-Tong Kuo, and Chi-Yen Huang, "Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals," Opt. Express 20, 26837-26844 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–129 (1971). [CrossRef]
  2. M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997). [CrossRef]
  3. M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys.81(3), 1063–1066 (1997). [CrossRef]
  4. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express15(2), 616–622 (2007). [CrossRef] [PubMed]
  5. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992). [CrossRef]
  6. R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996). [CrossRef]
  7. K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst.14(2), 307–317 (1993). [CrossRef]
  8. K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, “Free-space optical interconnections with liquid-crystal microprism arrays,” Appl. Opt.34(14), 2571–2580 (1995). [CrossRef] [PubMed]
  9. J. J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett.22(8), 552–554 (1997). [CrossRef] [PubMed]
  10. D. Faklis and G. M. Morris, “Diffractive optics technology for display applications,” Proc. SPIE2407, 57–61 (1995). [CrossRef]
  11. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997). [CrossRef]
  12. D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997). [CrossRef]
  13. O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999). [CrossRef]
  14. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett.17(12), 531–532 (1970). [CrossRef]
  15. A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).
  16. A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).
  17. J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002). [CrossRef]
  18. I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004). [CrossRef]
  19. H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).
  20. T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010). [CrossRef]
  21. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
  22. S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited