OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27003–27017

A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection

Chung-De Chen, Yu-Jen Wang, and Pin Chang  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27003-27017 (2012)
http://dx.doi.org/10.1364/OE.20.027003


View Full Text Article

Enhanced HTML    Acrobat PDF (1924 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study presents a novel design for a two-axis scanning device driven by lead-zirconate-titanate (PZT) ceramic. The proposed device consists of a scanning mirror and a Y-shaped piezoelectric actuator. The scanning mirror was fabricated using an MEMS process involving three masks. Experimental results show that the fast and slow frequencies at resonance are 25.0 kHz and 0.56 kHz, respectively. The optical scanning angles are 27.6° and 39.9°. The power consumption of the device is 13.4 mW at a driving voltage of 10 V. This study also develops a laser projection module integrated with the scanning device. The module can project a 2-D image at a resolution of 640 x 480.

© 2012 OSA

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(230.4000) Optical devices : Microstructure fabrication
(230.4040) Optical devices : Mirrors
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: August 14, 2012
Revised Manuscript: October 27, 2012
Manuscript Accepted: October 28, 2012
Published: November 15, 2012

Citation
Chung-De Chen, Yu-Jen Wang, and Pin Chang, "A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection," Opt. Express 20, 27003-27017 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).
  2. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express18(4), 3805–3819 (2010). [CrossRef] [PubMed]
  3. J. Tsai and M. C. Wu, “Gimbal-less MEMS two-axis optical scanner array with high fill-factor,” J. Microelectromech. Syst.14(6), 1323–1328 (2005). [CrossRef]
  4. J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008). [CrossRef]
  5. X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012). [CrossRef]
  6. Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009). [CrossRef]
  7. J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).
  8. A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006). [CrossRef]
  9. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007). [CrossRef] [PubMed]
  10. J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).
  11. Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005). [CrossRef]
  12. M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A Two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator,” IEEE MEMS Inter. Con. 2007 (Kobe, Japan) 21–25 (2007).
  13. H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” Proc. SPIE4773, 27–37 (2002). [CrossRef]
  14. A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006). [CrossRef]
  15. X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008). [CrossRef]
  16. K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator,” Opt. Express19(15), 13812–13824 (2011). [CrossRef] [PubMed]
  17. K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009). [CrossRef]
  18. S. Moon, S. W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express18(20), 21183–21197 (2010). [CrossRef] [PubMed]
  19. H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited