OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27039–27044

High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing

Kaiyuan Yao and Yaocheng Shi  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27039-27044 (2012)
http://dx.doi.org/10.1364/OE.20.027039


View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical sensor based on One-Dimensional photonic crystal (1D PhC) stack mode-gap cavity has been designed, fabricated and characterized. By introducing quadratically modulated width tapering structure, a waveguide coupled 1D PhC stack mode-gap cavity with calculated Q-factor 1.74 × 107 and an effective mode volume 1.48(λ/nSi)3 has been designed. This cavity has been used for sensing applications by immersing into water-ethanol mixture of different volume concentrations. Transmission measurement shows a quality factor as high as 27, 000 can be achieved for the cavity immersed in analytes. A sensitivity of 269nm/RIU has been demonstrated.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 28, 2012
Revised Manuscript: November 10, 2012
Manuscript Accepted: November 10, 2012
Published: November 15, 2012

Citation
Kaiyuan Yao and Yaocheng Shi, "High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing," Opt. Express 20, 27039-27044 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” Photon. Technol. Lett.23(13), 842–844 (2011). [CrossRef]
  2. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  3. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q Microcavities,” Opt. Lett.31(12), 1896–1898 (2006). [CrossRef] [PubMed]
  4. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010). [CrossRef] [PubMed]
  5. R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010). [CrossRef]
  6. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010). [CrossRef]
  7. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010). [CrossRef]
  8. T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18(6), 5420–5425 (2010). [CrossRef] [PubMed]
  9. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011). [CrossRef] [PubMed]
  10. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, Sindy, K. Y. Tang, R. Illic, and M. Lončar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” Quantum Electronics and Laser Science Conference (QELS) Baltimore, Maryland, May 1, (2011).
  11. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  12. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010). [CrossRef] [PubMed]
  13. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  14. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  15. B. C. Richards, J. Hendrickson, J. D. Olitzky, R. Gibson, M. Gehl, K. Kieu, U. K. Khankhoje, A. Homyk, A. Scherer, J.-Y. Kim, Y.-H. Lee, G. Khitrova, and H. M. Gibbs, “Characterization of 1D photonic crystal nanobeam cavities using curved microfiber,” Opt. Express18(20), 20558–20564 (2010). [CrossRef] [PubMed]
  16. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  17. Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011). [CrossRef] [PubMed]
  18. CRC Handbook of Chemistry and Physics, ed. David R. Lide (92nd Edition Internet Version 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited