OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27062–27070

Polarization line-by-line pulse shaping for the implementation of vectorial temporal Talbot effect

Chi-Cheng Chen, I-Chun Hsieh, Shang-Da Yang, and Chen-Bin Huang  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27062-27070 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vectorial optical arbitrary waveform generation is experimentally demonstrated by applying polarization line-by-line pulse shaping on a phase-modulated continuous laser frequency comb. Polarization shaped optical waveforms extending a 50-ps time window are successfully synthesized. Temporal Talbot effect is extended into the vectorial regime, where the distinct periodic temporal phases of the two orthogonally polarized pulse trains are exploited. In one example, we generate repetition-rate doubled circularly polarized pulses with alternating pulse-by-pulse handedness. In another example, complex instantaneous field polarizations are synthesized through the combination of line-by-line amplitude and temporal Talbot phase shaping. Our experimental results are measured through a dual-quadrature spectral interferometry system and are found in excellent agreements to the applied shaping controls.

© 2012 OSA

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(260.5430) Physical optics : Polarization
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Original Manuscript: September 17, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 11, 2012
Published: November 16, 2012

Chi-Cheng Chen, I-Chun Hsieh, Shang-Da Yang, and Chen-Bin Huang, "Polarization line-by-line pulse shaping for the implementation of vectorial temporal Talbot effect," Opt. Express 20, 27062-27070 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007). [CrossRef]
  2. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010). [CrossRef]
  3. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett.18(5), 721–723 (2006). [CrossRef]
  4. N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation,” Opt. Lett.33(15), 1714–1716 (2008). [CrossRef] [PubMed]
  5. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping,” Opt. Express14(26), 13164–13176 (2006). [CrossRef] [PubMed]
  6. C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photonics Rev.2(4), 227–248 (2008). [CrossRef]
  7. F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J.2(5), 719–727 (2010). [CrossRef]
  8. D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, O. Gerstel, J. P. Heritage, and S. J. B. Yoo, “Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation,” Opt. Express19(9), 8242–8253 (2011). [CrossRef] [PubMed]
  9. H.-P. Chuang and C.-B. Huang, “Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper,” Opt. Express18(23), 24003–24011 (2010). [CrossRef] [PubMed]
  10. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011). [CrossRef] [PubMed]
  11. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009). [CrossRef] [PubMed]
  12. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett.26(8), 557–559 (2001). [CrossRef] [PubMed]
  13. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B74(9), S133–S144 (2002). [CrossRef]
  14. L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett.31(5), 631–633 (2006). [CrossRef] [PubMed]
  15. F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett.34(8), 1258–1260 (2009). [CrossRef] [PubMed]
  16. M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett.32(23), 3379–3381 (2007). [CrossRef] [PubMed]
  17. M. T. Seidel, Z. Zhang, S. Yan, and H.-S. Tan, “Ultraviolet polarization pulse shaping using sum-frequency generation,” J. Opt. Soc. Am. B28(5), 1146–1151 (2011). [CrossRef]
  18. C. T. Middleton, D. B. Strasfeld, and M. T. Zanni, “Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy,” Opt. Express17(17), 14526–14533 (2009). [CrossRef] [PubMed]
  19. M. T. Seidel, S. Yan, and H.-S. Tan, “Mid-infrared polarization pulse shaping by parametric transfer,” Opt. Lett.35(4), 478–480 (2010). [CrossRef] [PubMed]
  20. K. Lee, M. Yi, J. D. Song, and J. Ahn, “Polarization shaping of few-cycle terahertz waves,” Opt. Express20(11), 12463–12472 (2012). [CrossRef] [PubMed]
  21. L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010). [CrossRef]
  22. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001). [CrossRef]
  23. J. Azaña and S. Gupta, “Complete family of periodic Talbot filters for pulse repetition rate multiplication,” Opt. Express14(10), 4270–4279 (2006). [CrossRef] [PubMed]
  24. C.-B. Huang and Y. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett.12(2), 167–169 (2000). [CrossRef]
  25. D. Pudo and L. R. Chen, “Tunable passive all-optical pulse repetition rate multiplier using fiber Bragg gratings,” J. Lightwave Technol.23(4), 1729–1733 (2005). [CrossRef]
  26. J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L. R. Chen, B. J. Eggleton, and J. Azaña, “Generation of a 4x100 GHz pulse train generation from a single-wavelength 10-GHz mode-locked laser using superimposed fiber gratings and nonlinear conversion,” J. Lightwave Technol.24, 2091–2099 (2006). [CrossRef]
  27. M. A. Preciado and M. A. Muriel, “Ultrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train,” Opt. Express15(19), 12102–12107 (2007). [CrossRef] [PubMed]
  28. D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Technol. Lett.13(3), 221–223 (2001). [CrossRef]
  29. P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett.22(5), 281–282 (2010). [CrossRef]
  30. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform characterization via dual-quadrature spectral interferometry,” Opt. Express17(1), 25–33 (2009). [CrossRef] [PubMed]
  31. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett.92(20), 208301 (2004). [CrossRef] [PubMed]
  32. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. U.S.A.107(12), 5329–5333 (2010). [CrossRef] [PubMed]
  33. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988). [CrossRef]
  34. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005). [CrossRef]
  35. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci.392(1802), 45–57 (1984). [CrossRef]
  36. P. G. Kwiat and R. Y. Chiao, “Observation of a nonclassical Berry’s phase for the photon,” Phys. Rev. Lett.66(5), 588–591 (1991). [CrossRef] [PubMed]
  37. J. C. Gutiérrez-Vega, “Pancharatnam-Berry phase of optical systems,” Opt. Lett.36(7), 1143–1145 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited