OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27102–27107

Generating tunable optical pulses over the ultrabroad range of 1.6–2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source

E.A. Anashkina, A.V. Andrianov, M.Yu. Koptev, V.M. Mashinsky, S.V. Muravyev, and A.V. Kim  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27102-27107 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report generation of femtosecond optical pulses tunable in the 1.6–2.5 μm range using GeO2-doped core silica-cladding fibers. Optical solitons with a duration of 80–160 fs have been measured by the FROG technique in the 2–2.3 μm range. To the best of our knowledge, these are the longest wavelength temporally characterized solitons generated in silica-based fibers. We have also demonstrated more than octave-spanning femtosecond supercontinuum generation in the 1.0–2.6 μm range.

© 2012 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.5650) Nonlinear optics : Raman effect
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 3, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 12, 2012
Published: November 16, 2012

E.A. Anashkina, A.V. Andrianov, M.Yu. Koptev, V.M. Mashinsky, S.V. Muravyev, and A.V. Kim, "Generating tunable optical pulses over the ultrabroad range of 1.6–2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source," Opt. Express 20, 27102-27107 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.D. Agger and J.H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express14, 50–57 (2005). [CrossRef]
  2. M. Ebrahim-Zadeh and I.T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008). [CrossRef]
  3. C.R. Phillips, J. Jiang, C. Mohr, A.C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J.S. Harris, M. E. Fermann, and M.M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett.37, 2928–2930 (2012). [CrossRef] [PubMed]
  4. A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010). [CrossRef] [PubMed]
  5. K. Kieu, R.J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010). [CrossRef] [PubMed]
  6. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett.37, 554–556 (2012). [CrossRef] [PubMed]
  7. M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, and D.S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B6, 1149–1158 (1989). [CrossRef]
  8. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Topics in Quantum Electron.7, 518–524 (2001). [CrossRef]
  9. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch femtosecond Er:fiber laser,” Opt. Lett.32, 3504–3506 (2007). [CrossRef] [PubMed]
  10. A.V. Andrianov, A.V. Kim, S.V. Muraviov, and A.A. Sysoliatin, “Generation of optical soliton pulses smoothly tunable in a wide frequency range in silica fibers with variable dispersion,” JETP Letters85, 364–368 (2007). [CrossRef]
  11. M.E. Fermann, A. Galvanauskas, and D.J. Harter, “Modular, high energy, widely-tunable ultrafast fiber source,” US patent US6885683.
  12. G.S. Qin, X. Yan, C. Kito, M.S. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett.34, 2015–2017 (2009). [CrossRef] [PubMed]
  13. N. Granzow, S.P. Stark, M.A. Schmidt, A.S. Tverjanovich, L. WondraczekL, and P.S. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19, 21003–21010 (2011). [CrossRef] [PubMed]
  14. G.S. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21, 1115–1121 (2011). [CrossRef]
  15. C.A. Xia, M. Kumar, O.P. Kulkarni, M.N. Islam, F.L. Terry, M.J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Express31, 2553–2555 (2006).
  16. C.L. Hagen, J.W. Walewski, and S.T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber With an ultrafast 1550-nm source,” IEEE Photon. Tech. Lett.18, 91–96 (2006). [CrossRef]
  17. E.M. Dianov and V.M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23, 3500–3508 (2005). [CrossRef]
  18. V.A. Kamynin, A.S. Kurkov, and V.M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett.9, 219–222 (2012). [CrossRef]
  19. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J.A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett.37, 289–291 (2012). [CrossRef] [PubMed]
  20. K.W. DeLong, D.N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron.32, 1253–1264 (1996). [CrossRef]
  21. A.V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901–203904 (2001). [CrossRef] [PubMed]
  22. G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  23. Yu. Yatsenko and A. Mavritsky, “D-scan measurement of nonlinear refractive index in fibers heavily doped with GeO2,” Opt. Lett.32, 3257–3259 (2007). [CrossRef] [PubMed]
  24. K. Rottwitt and J.H. Povlsen, “Analyzing the fundamental properties of Raman amplification in optical fibers,” J. Lightwave Technol.23, 3597–3605, (2005). [CrossRef]
  25. A.W. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  26. C. Agger, S.T. Sørensen, C.L. Thomsen, S.R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett.36, 2596–2598 (2011). [CrossRef] [PubMed]
  27. E.A. Anashkina, A.V. Andrianov, S.V. Muraviov, and A.V. Kim, “All-fiber design of erbium-doped laser system for tunable two-cycle pulse generation,” Opt. Express19, 20141–20150 (2011). [CrossRef] [PubMed]
  28. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express15, 16110–16123 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited