OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27133–27146

Real-time displacement measurement immune from atmospheric parameters using optical frequency combs

Pu Jian, Olivier Pinel, Claude Fabre, Brahim Lamine, and Nicolas Treps  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27133-27146 (2012)
http://dx.doi.org/10.1364/OE.20.027133


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a direct and real-time displacement measurement using an optical frequency comb, able to compensate optically for index of refraction variations due to atmospheric parameters. This scheme could be useful for applications requiring stringent precision over a long distance in air, a situation where dispersion becomes the main limitation. The key ingredient is the use of a mode-locked laser as a precise source for multi-wavelength interferometry in a homodyne detection scheme. By shaping temporally the local oscillator, one can directly access the desired parameter (distance variation) while being insensitive to fluctuations induced by parameters of the environment such as pressure, temperature, humidity and CO2 content.

© 2012 OSA

OCIS Codes
(120.2920) Instrumentation, measurement, and metrology : Homodyning
(140.4050) Lasers and laser optics : Mode-locked lasers
(280.3400) Remote sensing and sensors : Laser range finder
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 16, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 4, 2012
Published: November 16, 2012

Citation
Pu Jian, Olivier Pinel, Claude Fabre, Brahim Lamine, and Nicolas Treps, "Real-time displacement measurement immune from atmospheric parameters using optical frequency combs," Opt. Express 20, 27133-27146 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Weiss, M. Hennes, and M. Rotach, “Derivation of refractive index and temperature gradients from optical scintillometry to correct atmospherically induced errors for highly precise geodetic measurements,” Surv. Geophys.22, 589–596 (2001). [CrossRef]
  2. P. Exertier, P. Bonnefond, F. Deleflie, F. Barlier, M. Kasser, R. Biancale, and Y. Ménard, “Contribution of laser ranging to earth’s sciences,” C. R. Geosci.338, 958–967 (2006). [CrossRef]
  3. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett.35, 1479–1481 (2010). [CrossRef] [PubMed]
  4. J. Lee, Y. -J. Kim, K. Lee, S. Lee, and S. -W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4, 716–720 (2010). [CrossRef]
  5. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett.13, 339–341 (1988). [CrossRef] [PubMed]
  6. F. Delplancke, “The prima facility phase-referenced imaging and micro-arcsecond astrometry,” New Astron. Rev.52, 199–207 (2008). [CrossRef]
  7. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt.39, 5512–5517 (2000). [CrossRef]
  8. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett.29, 1153–1155 (2004). [CrossRef] [PubMed]
  9. K. -N. Joo and S. -W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express14, 5954–5960 (2006). [CrossRef] [PubMed]
  10. M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ.3, 08003 (2008). [CrossRef]
  11. B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett.101, 123601 (2008). [CrossRef] [PubMed]
  12. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt.47, 2715–2720 (2008). [CrossRef] [PubMed]
  13. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009). [CrossRef]
  14. P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17, 9300–9313 (2009). [CrossRef] [PubMed]
  15. P. L. Bender and J. C. Owen, “Correction of optical distance measurement for the fluctuating atmospheric index of refraction,” J. Geophys. Res.70, 2461–2462 (1965). [CrossRef]
  16. H. Matsumoto and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol.3, 1084–1086 (1992). [CrossRef]
  17. K. Meiners-Hagen and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol.19, 084004 (2008). [CrossRef]
  18. S. Azouigui, T. Badr, J. -P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum.81, 053112 (2010). [CrossRef] [PubMed]
  19. C. Helstrom, “The minimum variance of estimates in quantum signal detection,” IEEE Trans. Inf. Theory14, 234–242 (1968). [CrossRef]
  20. S. Braunstein and C. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett.72, 3439–3443 (1994). [CrossRef] [PubMed]
  21. O. Pinel, J. Fade, D. Braun, P. Jian, N. Treps, and C. Fabre, “Ultimate sensitivity of precision measurements with intense gaussian quantum light: a multimodal approach,” Phys. Rev. A85, 1–4 (2012). [CrossRef]
  22. A. N. Golubev and A. M. Chekhovsky, “Three-color optical range finding,” Appl. Opt.33, 7511–7517 (1994). [CrossRef] [PubMed]
  23. P. Réfrégier, Noise Theory and Application to Physics: From Fluctuations to Information (Springer Verlag, 2004).
  24. V. Delaubert, N. Treps, C. Harb, P. Lam, and H. Bachor, “Quantum measurements of spatial conjugate variables: displacement and tilt of a gaussian beam,” Opt. Lett.31, 1537–1539 (2006). [CrossRef] [PubMed]
  25. M. Hsu, V. Delaubert, P. Lam, and W. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt.6, 495–501 (2004). [CrossRef]
  26. B. Edlén, “The refractive index of air,” Metrologia2, 71–80 (1966). [CrossRef]
  27. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt.35, 1566–1573 (1996). [CrossRef] [PubMed]
  28. G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia35, 133–139 (1998). [CrossRef]
  29. A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys.28, L473–L475 (1989). [CrossRef]
  30. O. Pinel, Pu. Jian, R. Medeiros de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett.108, 083601 (2012). [CrossRef] [PubMed]
  31. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306, 1330–1336 (2004). [CrossRef] [PubMed]
  32. Formulas for refractive index of air are available on http://emtoolbox.nist.gov/Wavelength/Documentation.asp
  33. R. Macovez, M. Mariano, S. D. Finizio, and J. Martorell, “Measurement of the dispersion of air and of refractive index anomalies by wavelength-dependent nonlinear interferometry,” Opt. Express17, 13881–13888 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited