OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27147–27154

Evolution of hole shape and size during short and ultrashort pulse laser deep drilling

Sven Döring, John Szilagyi, Sören Richter, Felix Zimmermann, Martin Richardson, Andreas Tünnermann, and Stefan Nolte  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27147-27154 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A detailed study of the influence of the pulse duration, from the femtosecond to the nanosecond regime, on the evolution of the hole shape and depth during percussion drilling in silicon is presented. Real-time backlight imaging of the hole development is obtained for holes up to 2 mm deep with aspect ratios extending to 25:1. For low pulse energies, the hole-shape and drilling characteristics are similar for femtosecond, picoseconds and nanosecond regimes. At higher pulse energies, ns-pulses exhibit slower average drilling rates but eventually reach greater final depths. The shape of these holes is however dominated by branching and large internal cavities. For ps-pulses, a cylindrical shape is maintained with frequent small bulges on the side-walls. In contrast, fs-pulses cause only a limited number of imperfections on a tapered hole shape.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3850) Other areas of optics : Materials processing
(150.5495) Machine vision : Process monitoring and control

ToC Category:
Laser Microfabrication

Original Manuscript: July 26, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 12, 2012
Published: November 16, 2012

Sven Döring, John Szilagyi, Sören Richter, Felix Zimmermann, Martin Richardson, Andreas Tünnermann, and Stefan Nolte, "Evolution of hole shape and size during short and ultrashort pulse laser deep drilling," Opt. Express 20, 27147-27154 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in micromachining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004). [CrossRef]
  2. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun.129(1-2), 134–142 (1996). [CrossRef]
  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997). [CrossRef]
  4. H. Dachraoui, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals and semiconductors: evidence of ultra-fast coulomb explosion,” Appl. Phys., A Mater. Sci. Process.83(2), 333–336 (2006). [CrossRef]
  5. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996). [CrossRef]
  6. S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005). [CrossRef]
  7. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron.31(5), 378–382 (2001). [CrossRef]
  8. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silica glasses in air,” Appl. Surf. Sci.183(3-4), 151–164 (2001). [CrossRef]
  9. T. V. Kononenko, S. M. Klimentov, S. V. Garnov, V. I. Konov, D. Breitling, C. Foehl, A. Ruf, J. Radtke, and F. Dausinger, “Hole formation process in laser deep drilling with short and ultrashort pulses,” Proc. SPIE4426, 108–112 (2002). [CrossRef]
  10. S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci.248(1-4), 299–303 (2005). [CrossRef]
  11. C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process,” J. Appl. Phys.99(9), 093101 (2006). [CrossRef]
  12. P. J. L. Webster, M. S. Muller, and J. M. Fraser, “High speed in situ depth profiling of ultrafast micromachining,” Opt. Express15(23), 14967–14972 (2007). [CrossRef] [PubMed]
  13. A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro Nanoen.3(3), 211–215 (2008). [CrossRef]
  14. F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett.36(6), 822–824 (2011). [CrossRef] [PubMed]
  15. E. Coyne, J. Magee, P. Mannion, and G. O’Connor, “A study of femtosecond laser interaction with wafer grade silicon,” Proc. SPIE4876, 487–499 (2003). [CrossRef]
  16. S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of the hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys., A Mater. Sci. Process.105(1), 69–74 (2011). [CrossRef]
  17. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express18(19), 20395–20400 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (5259 KB)     
» Media 2: MOV (37606 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited