OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27198–27211

Deterministic generation of an on-demand Fock state

Keyu Xia, Gavin K. Brennen, Demosthenes Ellinas, and Jason Twamley  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27198-27211 (2012)
http://dx.doi.org/10.1364/OE.20.027198


View Full Text Article

Enhanced HTML    Acrobat PDF (2373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study the deterministic generation of photon Fock states on-demand using a protocol based on a Jaynes Cummings quantum random walk which includes damping. We then show how each of the steps of this protocol can be implemented in a low temperature solid-state quantum system with a Nitrogen-Vacancy centre in a nanodiamond coupled to a nearby high-Q optical cavity. By controlling the coupling duration between the NV and the cavity via the application of a time dependent Stark shift, and by increasing the decay rate of the NV via stimulated emission depletion (STED) a Fock state with high photon number can be generated on-demand. Our setup can be integrated on a chip and can be accurately controlled.

© 2012 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.5290) Quantum optics : Photon statistics
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: October 27, 2012
Published: November 16, 2012

Citation
Keyu Xia, Gavin K. Brennen, Demosthenes Ellinas, and Jason Twamley, "Deterministic generation of an on-demand Fock state," Opt. Express 20, 27198-27211 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5, 738–743 (2011). [CrossRef]
  2. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011). [CrossRef]
  3. C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature448, 889–893 (2007). [CrossRef] [PubMed]
  4. M. F. Santos, E. Solano, and R. L. de Matos Filho, “Conditional large Fock state preparation and field state reconstruction in cavity QED,” Phys. Rev. Lett.87, 093601 (2001). [CrossRef] [PubMed]
  5. M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N. Zagury, “Quantum non-demolition measurement of small photon numbers by rydberg atom phase sensitive detection,” Phys. Rev. Lett.65, 976–979 (1990). [CrossRef] [PubMed]
  6. C. K. Law and J. H. Eberly, “Arbitrary control of a quantum electromagnetic field,” Phys. Rev. Lett.76, 1055– 1058 (1996). [CrossRef] [PubMed]
  7. Y. Liu, L. F. Wei, and F. Nori, “Generation of non-classical photon states using a superconducting qubit in a quantum electrodynamic microcavity,” Europhys. Lett.67, 941–947 (2004). [CrossRef]
  8. M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of fock states in a superconducting quantum circuit,” Nature454, 310–314 (2008). [CrossRef] [PubMed]
  9. P. Filipowicz, J. Javanainen, and P. Meystre, “Quantum and semiclassical steady states of a kicked cavity mode,” J. Opt. Soc. Am. B3, 906–910 (1986). [CrossRef]
  10. S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86, 3534–3537 (2001). [CrossRef] [PubMed]
  11. B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys.6, 97 (2004). [CrossRef]
  12. K. R. Brown, K. M. Dani, D. M. Stamper-Kurn, and K. B. Whaley, “Deterministic optical Fock-state generation,” Phys. Rev. A67, 043818 (2003). [CrossRef]
  13. D. Ellinas and I. Smyrnakis, “Asymptotics of a quantum random walk driven by an optical cavity,” J. Opt. B: Quant. Semiclass. Opt.7, S152–S157 (2005). [CrossRef]
  14. A. J. Bracken, D. Ellinas, and I. Tsohantji, “Pseudo memory effects, majorization and entropy in quantum random walks,” J. Phys. A: Math. Gen.37, L91–L97 (2004). [CrossRef]
  15. V. M. Acosta, C. Santori, A. Faraon, Z. Huang, K.-M. C. Fu, A. Stacey, D. A. Simpson, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and R. G. Beausoleil, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett.108, 206401 (2012). [CrossRef] [PubMed]
  16. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett.96, 241113 (2010). [CrossRef]
  17. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009). [CrossRef] [PubMed]
  18. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006). [CrossRef] [PubMed]
  19. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom.” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
  20. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A30, 1386–1391 (1984). [CrossRef]
  21. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985). [CrossRef] [PubMed]
  22. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010). [CrossRef]
  23. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
  24. L. C. Bassett, F. J. Heremans, C. G. Yale, B. B. Buckley, and D. D. Awschalom, “Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields,” Phys. Rev. Lett.107, 266403 (2011). [CrossRef]
  25. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3, 144–147 (2009). [CrossRef]
  26. K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic jahn-teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett.103, 256404 (2009). [CrossRef]
  27. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature477, 574–578 (2011). [CrossRef] [PubMed]
  28. A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. J. Rogers, R. L. McMurtrie, N. B. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett.102, 195506 (2009). [CrossRef] [PubMed]
  29. V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B82, 201202(R) (2010). [CrossRef]
  30. Y. Ma, M. Rohlfing, and A. Gali, “Excited states of the negatively charged nitrogen-vacancy color center in diamond,” Phys. Rev. B81, 041204(R) (2010). [CrossRef]
  31. J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys.13, 025025 (2011). [CrossRef]
  32. P. Tamarat, N. B. Manson, J. P. Harrison, R. L. McMurtrie, A. Nizovtsev, C. Santori, R. G. Beausoleil, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond,” New J. Phys.10, 045004 (2008). [CrossRef]
  33. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and K. Semba, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature478, 221–224 (2011). [CrossRef] [PubMed]
  34. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett.97, 083002 (2006). [CrossRef] [PubMed]
  35. S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B: Quantum Semiclass. Opt.1, 424–432 (1999). [CrossRef]
  36. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004). [CrossRef] [PubMed]
  37. G. J. Milburn, “Kicked quantized cavity mode - an open-systems- theory approach,” Phys. Rev. A36, 744–749 (1987). [CrossRef] [PubMed]
  38. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012). [CrossRef]
  39. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  40. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23, 247–249 (1998). [CrossRef]
  41. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996). [CrossRef] [PubMed]
  42. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006). [CrossRef]
  43. I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express15, 3390–3395 (2007). [CrossRef] [PubMed]
  44. A. Mazzei, S. Gẗzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating Whispering-Gallery modes by a single Rayleigh scattering: a classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007). [CrossRef] [PubMed]
  45. J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010). [CrossRef]
  46. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Photonics7, 11–23 (2012).
  47. B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Ōsawa, and T. Plakhotnik, “Five-Nanometer Diamond with Luminescent Nitrogen-Vacancy Defect Centers,” Small.5, 1649–1653 (2009). [CrossRef] [PubMed]
  48. L. Robledo, H. Bernien, I. van Weperen, and R. Hanson, “Control and coherence of the optical transition of single nitrogen vacancy centers in diamond,” Phys. Rev. Lett.105, 177403 (2010). [CrossRef]
  49. P. E. Barclay, C. Santori, K. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited