OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27220–27225

Bragg-Scattering conversion at telecom wavelengths towards the photon counting regime

Katarzyna Krupa, Alessandro Tonello, Victor V. Kozlov, Vincent Couderc, Philippe Di Bin, Stefan Wabnitz, Alain Barthélémy, Laurent Labonté, and Sébastien Tanzilli  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27220-27225 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1686 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

© 2012 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect
(270.0270) Quantum optics : Quantum optics

ToC Category:
Four-Wave Mixing in Waveguides and Fibers

Original Manuscript: September 17, 2012
Revised Manuscript: October 21, 2012
Manuscript Accepted: October 22, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Katarzyna Krupa, Alessandro Tonello, Victor V. Kozlov, Vincent Couderc, Philippe Di Bin, Stefan Wabnitz, Alain Barthélémy, Laurent Labonté, and Sébastien Tanzilli, "Bragg-Scattering conversion at telecom wavelengths towards the photon counting regime," Opt. Express 20, 27220-27225 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012). [CrossRef]
  2. N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008). [CrossRef]
  3. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002). [CrossRef]
  4. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011). [CrossRef]
  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005). [CrossRef]
  6. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012). [CrossRef]
  7. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010). [CrossRef] [PubMed]
  8. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010). [CrossRef]
  9. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005). [CrossRef] [PubMed]
  10. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010). [CrossRef] [PubMed]
  11. I. Agha, M. Davanço, D. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012). [CrossRef] [PubMed]
  12. S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).
  13. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005). [CrossRef]
  14. K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012). [CrossRef]
  15. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express14, 8995–8999 (2006). [CrossRef] [PubMed]
  16. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007). [CrossRef]
  17. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett.31, 3086–3088 (2006). [CrossRef] [PubMed]
  18. E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett.32, 2819–2821 (2007). [CrossRef] [PubMed]
  19. B. P.-P. Kuo, J. M. Fini, L. Gruner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20, 18611–18619 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited