OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27265–27282

Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals

D. Puris, C. Schmidt-Langhorst, K. Lüdge, N. Majer, E. Schöll, and K. Petermann  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27265-27282 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel theoretical time-domain model for a quantum dot semiconductor optical amplifier, that allows to simulate subpicosecond pulse propagation including power-based and phase-based effects. Static results including amplified spontaneous emission spectra, continuous wave amplification, and four-wave mixing experiments in addition to dynamic pump-probe simulations are presented for different injection currents. The model uses digital filters to describe the frequency dependent gain and microscopically calculated carrier-carrier scattering rates for the interband carrier dynamics. It can be used to calculate the propagation of multiple signals with different wavelengths or one wideband signal with high bitrate.

© 2012 OSA

OCIS Codes
(250.4480) Optoelectronics : Optical amplifiers
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Supercontinuum Generation and Ultra-Short Pulses

Original Manuscript: July 17, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 27, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

D. Puris, C. Schmidt-Langhorst, K. Lüdge, N. Majer, E. Schöll, and K. Petermann, "Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals," Opt. Express 20, 27265-27282 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots (Springer, 1998).
  2. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Willey & Sons, 1999).
  3. T. W. Berg, Quantum Dot Semiconductor Optical Amplifiers, Physics and Application (Research Center COM, 2004).
  4. W. W. Chow and S. W. Koch, “Theory of semiconductor quantum-dot laser dynamics,” IEEE J. Quantum Electron.41(4), 495–505 (2005). [CrossRef]
  5. P. Blood, “Gain and recombination in quantum dot lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 808–818 (2009). [CrossRef]
  6. J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42(9), 942–952 (2006). [CrossRef]
  7. J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Lämmlin, D. Bimberg, E. Malić, M. Richter, E. Schöll, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett.101, 256803 (2008). [CrossRef] [PubMed]
  8. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifier,” IEEE J. Quantum Electron.45(3), 240–248 (2009). [CrossRef]
  9. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifier,” IEEE J. Quantum Electron.44(7), 658–666 (2008). [CrossRef]
  10. J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Role of carrier reservoirs on the slow phase recovery of quantum dot semiconductor optical amplifiers,” App. Phys. Lett.94, 041112 (2009). [CrossRef]
  11. K. Lüdge, M. J. P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B78, 035316 (2008). [CrossRef]
  12. K. Lüdge and E. Schöll, “Quantum dot lasers - desynchronized nonlinear dynamics of electrons and holes,” IEEE J. Quantum Electron.45(11), 1396–1403 (2009). [CrossRef]
  13. M. Wegert, N. Majer, K. Lüdge, S. Dommers-Völkel, J. Gomis-Bresco, A. Knorr, U. Woggon, and E. Schöll, “Nonlinear gain dynamics of quantum dot optical amplifiers,” Semicond. Sci. Technol.25, 014008 (2010).
  14. N. Majer, K. Lüdge, and E. Schöll, “Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers,” Phys. Rev. B82, 235301 (2010). [CrossRef]
  15. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B69, 235332 (2004). [CrossRef]
  16. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. G. Weber, “Time-domain modeling of semiconductor optical amplifiers for OTDM applications,” J. Lightwave Technol.17, 2577–2583 (1999). [CrossRef]
  17. R. E. Bogner and A. G. Constantinides, Introduction to Digital Filtering (John Wiley & Sons, 1975).
  18. J. Kim, “Effect of Free-carrier Absorption on the Carrier Dynamics of Quantum-dot Semiconductor Optical Amplifiers,” J. Korean Phys. Soc.55(2), 512–516 (2009). [CrossRef]
  19. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett.84(2), 272–274 (2004). [CrossRef]
  20. D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron.38(12), 1587–1593 (2002). [CrossRef]
  21. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express16, 4177–4191 (2008). [CrossRef]
  22. V. Cesari, P. Borri, M. Rosetti, A. Fiore, and W. Langbein, “Refractive index dynamic and linewidth enhancement fator in p-doped InAs-GaAs quantum-dot amplifiers,” IEEE J. Quantum Electron.45(6), 579–585 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited