OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27283–27289

Polarization rotation vector solitons in a graphene mode-locked fiber laser

Yu Feng Song, Han Zhang, Ding Yuan Tang, and De Yuan Shen  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27283-27289 (2012)
http://dx.doi.org/10.1364/OE.20.027283


View Full Text Article

Enhanced HTML    Acrobat PDF (1557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Graphene as a Saturable Absorber

History
Original Manuscript: August 1, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 4, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Citation
Yu Feng Song, Han Zhang, Ding Yuan Tang, and De Yuan Shen, "Polarization rotation vector solitons in a graphene mode-locked fiber laser," Opt. Express 20, 27283-27289 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett.12(8), 614–616 (1987). [CrossRef] [PubMed]
  2. V. V. Afanasjev, “Soliton polarization rotation in fiber lasers,” Opt. Lett.20(3), 270–272 (1995). [CrossRef] [PubMed]
  3. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett.13(1), 53–55 (1988). [CrossRef] [PubMed]
  4. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarised solitons in birefringent optical fibers,” Opt. Commun.112(5-6), 278–282 (1994). [CrossRef]
  5. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett.14(18), 1011–1013 (1989). [CrossRef] [PubMed]
  6. S. T. Cundiff, B. C. Collings, and W. H. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express1(1), 12–21 (1997). [CrossRef] [PubMed]
  7. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express16(14), 10053–10058 (2008). [CrossRef] [PubMed]
  8. L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, and H. Y. Tam, “Coexistence of polarization-locked and polarization-rotating vector solitons in a fiber laser with SESAM,” Opt. Lett.34(20), 3059–3061 (2009). [CrossRef] [PubMed]
  9. J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011). [CrossRef]
  10. R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron.48(7), 903–907 (2012). [CrossRef]
  11. X. Wu, D. Y. Tang, L. M. Zhao, and H. Zhang, “Mode-Locking of fiber lasers induced by residual polarization dependent loss of cavity components,” Laser Phys.20(10), 1913–1917 (2010). [CrossRef]
  12. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  13. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010). [CrossRef]
  14. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010). [CrossRef]
  15. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37(11), 2085–2087 (2012). [CrossRef] [PubMed]
  16. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992). [CrossRef]
  17. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express16(17), 12618–12623 (2008). [CrossRef] [PubMed]
  18. S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett.49(19), 1224–1226 (1986). [CrossRef]
  19. K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in birefringent fibers,” Opt. Lett.12(3), 202–204 (1987). [CrossRef] [PubMed]
  20. M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Commun.91(5-6), 401–407 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited