OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27299–27310

Optical limiting and spectral stabilization in segmented photonic lattices

Matthias Heinrich, Falk Eilenberger, Robert Keil, Felix Dreisow, Eric Suran, Frédéric Louradour, Andreas Tünnermann, Thomas Pertsch, Stefan Nolte, and Alexander Szameit  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27299-27310 (2012)
http://dx.doi.org/10.1364/OE.20.027299


View Full Text Article

Enhanced HTML    Acrobat PDF (3148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose photonic lattices with segmentation-based linear self imaging as integrated optical limiters. Starting from unity transmission in the linear regime, nonlinear delocalization leads to a continuous decrease of the overall transmission for increasing input powers. The diffractive propagation between input and output port offers the additional benefit of substantially decreased nonlinear spectral distortions. The functionality is demonstrated experimentally in a waveguide lattice realized in bulk fused silica with the femtosecond laser writing technique.

© 2012 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Signal Processing in X(3) Bulk Materials

History
Original Manuscript: August 10, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 12, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Citation
Matthias Heinrich, Falk Eilenberger, Robert Keil, Felix Dreisow, Eric Suran, Frédéric Louradour, Andreas Tünnermann, Thomas Pertsch, Stefan Nolte, and Alexander Szameit, "Optical limiting and spectral stabilization in segmented photonic lattices," Opt. Express 20, 27299-27310 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27299


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photon.5, 141–148 (2011).
  2. T. Vo, J. Schröder, B. Corcoran, J. V. Erps, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic-chip-based ultrafast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron.18, 834–846 (2012). [CrossRef]
  3. H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-tb/s demultiplexing of an otdm dpsk data signal using a silicon waveguide,” IEEE Photon. Technol. Lett.22, 1762–1764 (2010). [CrossRef]
  4. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron.17, 299 (1993). [CrossRef]
  5. J. W. Perry, K. Mansour, I.-Y. S. Lee, X.-L. Wu, P. V. Bedworth, C.-T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science273, 1533–1536 (1996). [CrossRef]
  6. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked ti:sapphire laser,” Opt. Lett.16, 42–44 (1991). [CrossRef] [PubMed]
  7. R. C. C. Leite, S. P. S. Porto, and T. C. Damen, “The thermal lens effect as a powerlimiting device,” Appl. Phys. Lett.10, 100–101 (1967). [CrossRef]
  8. A. Szameit and S. Nolte, “Discrete optics in femtosecond laser-written photonic structures,” J. Phys. B43, 163001 (2010). [CrossRef]
  9. F. Lederer, G. Stegeman, D. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep.463, 1–126 (2008). [CrossRef]
  10. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton Shape and Mobility Control in Optical Lattices,” Prog. Opt.52, 63–148 (2009). [CrossRef]
  11. D. Christodoulides and R. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett.13, 794–796 (1988). [CrossRef] [PubMed]
  12. Y. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett.18, 1147–1149 (1993). [CrossRef] [PubMed]
  13. D. Christodoulides and E. Eugenieva, “Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays,” Phys. Rev. Lett.87, 233901 (2001). [CrossRef] [PubMed]
  14. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep.1, 94 (2011). [CrossRef]
  15. J. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett.36, 772–774 (2011). [CrossRef] [PubMed]
  16. R. Iwanow, D. May-Arrioja, D. Christodoulides, G. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95, 053902 (2005). [CrossRef] [PubMed]
  17. F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys.52, 555–600 (1929). [CrossRef]
  18. R. Morandotti, U. Peschel, J. Aitchinson, H. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett.83, 4756–4759 (1999). [CrossRef]
  19. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett.96, 243901 (2006). [CrossRef] [PubMed]
  20. F. Dreisow, M. Heinrich, A. Szameit, S. Doering, S. Nolte, A. Tuennermann, S. Fahr, and F. Lederer, “Spectral resolved dynamic localization in curved fs laser written waveguide arrays,” Opt. Express16, 3474–3483 (2008). [CrossRef] [PubMed]
  21. P. Zhang, N. K. Efremidis, A. Miller, Y. Hu, and Z. Chen, “Observation of coherent destruction of tunneling and unusual beam dynamics due to negative coupling in three-dimensional photonic lattices,” Opt. Lett.35, 3252–3254 (2010). [CrossRef] [PubMed]
  22. S. Longhi, “Imaging reconstruction in segmented waveguide arrays,” Opt. Lett.33, 473–475 (2008). [CrossRef] [PubMed]
  23. A. Szameit, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, E. Suran, F. Louradour, A. Barthelemy, and S. Longhi, “Image reconstruction in segmented femtosecond laser-written waveguide arrays,” Appl. Phys. Lett.93, 181109 (2008). [CrossRef]
  24. R. Keil, Y. Lahini, Y. Shechtman, M. Heinrich, R. Pugatch, F. Dreisow, S. Nolte, and A. Szameit, “Perfect imaging through a disordered waveguide lattice,” Opt. Lett.37, 809–811 (2012). [CrossRef] [PubMed]
  25. M. Heinrich, R. Keil, Y. Lahini, U. Naether, F. Dreisow, A. Tünnermann, S. Nolte, and A. Szameit, “Disorder-enhanced nonlinear delocalization in segmented waveguide arrays,” New J. Phys.12, 073026 (2012). [CrossRef]
  26. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006). [CrossRef]
  27. D. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear optical waveguide lattices,” Nature424, 817–823 (2003). [CrossRef] [PubMed]
  28. A. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am.55, 261–271 (1965). [CrossRef]
  29. T. Schulte, S. Drenkelforth, G. Kleine Büning, W. Ertmer, J. Arlt, M. Lewenstein, and L. Santos, “Dynamics of Bloch oscillations in disordered lattice potentials,” Phys. Rev. A77, 023610 (2008). [CrossRef]
  30. I. Babushkin, A. Housakou, J. Herrmann, and Y. S. Kivshar, “Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides,” Opt. Express15, 11978–11983 (2007). [CrossRef] [PubMed]
  31. F. Eilenberger, S. Minardi, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch, “Evolution dynamics of discrete-continuous light bullets,” Phys. Rev. A84, 013836 (2011). [CrossRef]
  32. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From maxwell’s to unidirectional equations,” Phys. Rev. E70, 036604 (2004). [CrossRef]
  33. P. Kinsler, “Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses,” Phys. Rev. A81, 023808 (2010). [CrossRef]
  34. M. Heinrich, A. Szameit, F. Dreisow, R. Keil, S. Minardi, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Erratum: Observation of three-dimensional discrete-continuous x waves in photonic lattices,” Phys. Rev. Lett.106, 029901 (2011). [CrossRef]
  35. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  36. F. Eilenberger, M. de Sterke, and B. J. Eggleton, “Soliton mediated optical quantization in the transmission of one-dimensional photonic crystals,” Opt. Express18, 12708–12718 (2010). [CrossRef] [PubMed]
  37. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. SPIE5339, 524–538 (2004). [CrossRef]
  38. H. Eisenberg, Y. Silberberg, R. Morandotti, and J. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000). [CrossRef] [PubMed]
  39. Y. Vlasov, “Silicon integrated nanophotonics: Road from scientific explorations to practical applications,” in Proceedings of CLEO/QELS, San Jose, CA, USA (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited