OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27322–27330

All-optical switch consisting of two-stage interferometers controlled by using saturable absorption of monolayer graphene

Masayuki Oya, Hiroki Kishikawa, Nobuo Goto, and Shin-ichiro Yanagiya  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27322-27330 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



At routing nodes in future photonic networks, pico-second switching will be a key function. We propose an all-optical switch consisting of two-stage Mach-Zehnder interferometers, whose arms contain graphene saturable absorption films. Optical amplitudes along the interferometers are controlled to perform switching between two output ports instead of phase control used in conventional switches. Since only absorption is used for realizing complete switching, insertion loss of 10.2 dB is accompanied in switching. Picosecond response can be expected because of the fast response of saturable absorption of graphene. The switching characteristics are theoretically analyzed and numerically simulated by the finite-difference beam propagation method (FD-BPM).

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.0230) Optical devices : Optical devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Graphene as a Saturable Absorber

Original Manuscript: August 22, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 18, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Masayuki Oya, Hiroki Kishikawa, Nobuo Goto, and Shin-ichiro Yanagiya, "All-optical switch consisting of two-stage interferometers controlled by using saturable absorption of monolayer graphene," Opt. Express 20, 27322-27330 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Yang, A. K. Mishra, D. Lenstra, F. M. Huijskens, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Sub-picosecond all-optical switch using a multi-quantum-well semiconductor optical amplifier,” Optics Commun.236, 329–334 (2004). [CrossRef]
  2. M. Nagase, Y. Shoji, S. Suda, K. Kintaka, H. Kawashima, R. Akimoto, H. Kuwatsuka, T. Hasama, and H. Ishikawa, “Ultrafast all-optical gating operation using michelson interferometer for hybrid integration of intersubband transition switch on Si platform,” IEEE Photon. Tech. Lett.23(24), 1884–1886 (2011). [CrossRef]
  3. H. Kishikawa and N. Goto, “Proposal of all-optical wavelength-selective switching using waveguide-type Raman amplifiers and 3dB couplers,” IEEE/OSA J. Lightwave Technol.23(4), 1631–1636 (2005). [CrossRef]
  4. H. Kishikawa, K. Kimiya, N. Goto, and S. Yanagiya, “All-optical wavelength-selective switch consisting of asymmetric X-junction couplers and Raman amplifiers for wide wavelength range,” IEEE/OSA J. Lightwave Technol.28(1), 172–180 (2010). [CrossRef]
  5. K. Suto, T. Saito, T. Kimura, J. Nishizawa, and T. Tanabe, “Semiconductor Raman amplifier for terahertz bandwidth optical communication,” IEEE/OSA J. Lightwave Technol.20(4), 705–711 (2002). [CrossRef]
  6. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett.85(12), 2196–2198 (2004). [CrossRef]
  7. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.6(3), 183–191 (2007). [CrossRef]
  8. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4(9), 611–622 (2010). [CrossRef]
  9. S. Yamashita,“A tutorial on nonlinear photonics applications of carbon nanotube and graphene” IEEE/OSA J. Lightwave Technol. 30(4), 427–447 (2012). [CrossRef]
  10. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube - polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), (2009). [CrossRef]
  11. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Yang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  12. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res.4(3), 297–307 (2011). [CrossRef]
  13. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett.92(4), 042116-1–3 (2008). [CrossRef]
  14. M. Izutsu, A. Enokihara, and T. Sueta,“Optical-waveguide hybrid coupler,” Opt. Lett.7(11), 549–551 (1982). [CrossRef] [PubMed]
  15. P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall,“Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” IEEE/OSA J. Lightwave Technol.15(4), 688–696 (1997). [CrossRef]
  16. H. Hiura, N. Goto, and S. Yanagiya, “Wavelength-insensitive integrated-optic circuit consisting of asymmetric X-junction couplers for recognition of BPSK labels,” IEEE/OSA J. Lightwave Technol.27(24), 5543–5551 (2009). [CrossRef]
  17. W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.QE-11(1), 32–39 (1975). [CrossRef]
  18. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano, 4(2), 803–810 (2010). [CrossRef] [PubMed]
  19. Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photon. Tech. Lett.6(5), 626–628 (1994). [CrossRef]
  20. T. Hashimoto, T. Kurosaki, M. Yanagisawa, Y. Suzuki, Y. Akahori, Y. Inoue, Y. Tohmori, K. Kato, Y. Yamada, N. Ishihara, and K. Kato, “A 1.3/1.55-μm wavelength-division multiplexing optical module using a planar light-wave full duplex operation,” IEEE/OSA J. Lightwave Technol.18(11), 1541–1547 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited