OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27355–27363

Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator

Alessia Pasquazi, Marco Peccianti, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 27355-27363 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel mode locked ultrafast laser, based on an integrated high-Q microring resonator. Our scheme exhibits stable operation of two slightly shifted spectral optical comb replicas. It generates a highly monochromatic radiofrequency modulation of 65.8MHz with a linewidth < 10kHz, on a 200GHz output pulse train.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3948) Lasers and laser optics : Microcavity devices
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Frequency Comb Generation

Original Manuscript: August 30, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: October 3, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Alessia Pasquazi, Marco Peccianti, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti, "Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator," Opt. Express 20, 27355-27363 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  2. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012). [CrossRef]
  3. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fibre networks,” J. Lightwave Technol.28(4), 662–701 (2010). [CrossRef]
  4. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286(5444), 1523–1528 (1999). [CrossRef] [PubMed]
  5. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. T. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010). [CrossRef]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  7. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011). [CrossRef]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  9. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101(5), 053903 (2008). [CrossRef] [PubMed]
  10. T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett.34(21), 3307–3309 (2009). [CrossRef] [PubMed]
  11. Z. Jiao, J. Liu, Z. Lu, X. Zhang, P. J. Poole, P. J. Barrios, and D. Poitras, “C-Band InAs / InP quantum dot semiconductor repetition rate pulses,” IEEE Photon. Technol. Lett.23, 543–545 (2011). [CrossRef]
  12. N. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett.79(21), 4047–4051 (1997). [CrossRef]
  13. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett.20(19), 2009–2011 (1995). [CrossRef] [PubMed]
  14. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett.22(18), 1409–1411 (1997). [CrossRef] [PubMed]
  15. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sørensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am.15(4), 1315–1321 (1998). [CrossRef]
  16. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett.27(7), 482–484 (2002). [CrossRef] [PubMed]
  17. J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz,” Opt. Lett.34(24), 3902–3904 (2009). [CrossRef] [PubMed]
  18. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am.25(7), 1178–1186 (2008). [CrossRef]
  19. S. Zhang, F. Lu, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett.30(21), 2852–2854 (2005). [CrossRef] [PubMed]
  20. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012). [CrossRef] [PubMed]
  21. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  22. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.34(7), 878–880 (2009). [CrossRef] [PubMed]
  23. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev.112(6), 1940–1949 (1958). [CrossRef]
  24. M. Yoshida, A. Ono, and M. Nakazawa, “10 GHz regeneratively mode-locked semiconductor optical amplifier fiber ring laser and its linewidth characteristics,” Opt. Lett.32(24), 3513–3515 (2007). [CrossRef] [PubMed]
  25. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  26. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D. X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express17(16), 14098–14103 (2009). [CrossRef] [PubMed]
  27. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express18(4), 3858–3863 (2010). [CrossRef] [PubMed]
  28. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. T. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  29. A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011). [CrossRef]
  30. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A78(4), 043806 (2008). [CrossRef]
  31. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  32. J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol.27(3), 189–204 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited