OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27363–27368

Bistability suppression and low threshold switching using frozen light at a degenerate band edge waveguide

Nadav Gutman, Andrey A. Sukhorukov, Falk Eilenberger, and C. Martijn de Sterke  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27363-27368 (2012)
http://dx.doi.org/10.1364/OE.20.027363


View Full Text Article

Enhanced HTML    Acrobat PDF (1497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We predict that nonlinear waveguides which support frozen light associated with a degenerate photonic band edge, where the dispersion relation is locally quartic, exhibit a tunable, all-optical switching response. The thresholds for switching are orders-of-magnitude lower than at regular band edges. By adjusting the input condition, bistability can be eliminated, preventing switching hysteresis.

© 2012 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Signal Processing in X(3) Bulk Materials

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 11, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Citation
Nadav Gutman, Andrey A. Sukhorukov, Falk Eilenberger, and C. Martijn de Sterke, "Bistability suppression and low threshold switching using frozen light at a degenerate band edge waveguide," Opt. Express 20, 27363-27368 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27363


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Inc., Orlando, FL, 1985).
  2. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  3. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4, 535–544 (2010). [CrossRef]
  4. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E66, 055601 (2002). [CrossRef]
  5. I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber bragg gratings,” J. Opt. Soc. Am. B27, 1343–1351 (2010). [CrossRef]
  6. B. E. A. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics, vol. 22 (Wiley Online Library, 1991). [CrossRef]
  7. L. L. Goddard, J. S. Kallman, and T. C. Bond, “Rapidly reconfigurable alloptical universal logic gates,” Proc. SPIE636863680H (2006). [CrossRef]
  8. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett.58, 160–163 (1987). [CrossRef] [PubMed]
  9. C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Optics33, 203–260 (1994).
  10. B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Comm.149, 267–271 (1998). [CrossRef]
  11. N. G. R. Broderick, “Bistable switching in nonlinear bragg gratings,” Opt. Comm.148, 90–94 (1998). [CrossRef]
  12. F. Eilenberger, C. M. de Sterke, and B. J. Eggleton, “Soliton mediated optical quantization in the transmission of one-dimensional photonic crystals,” Opt. Express18, 12708–12718 (2010). [CrossRef] [PubMed]
  13. A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photon. Rev.5, 1863–8899 (2010).
  14. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4, 862–868 (2010). [CrossRef]
  15. A. Figotin and I. Vitebskiy, “Frozen light in photonic crystals with degenerate band edge,” Phys. Rev. E74, 066613 (2006). [CrossRef]
  16. N. Gutman, L. C. Botten, A. A. Sukhorukov, and C. M. de Sterke, “Degenerate band edges in optical fiber with multiple grating: efficient coupling to slow light,” Opt. Lett.36, 3257–3259 (2011). [CrossRef] [PubMed]
  17. N. Gutman, C. M. de Sterke, A. A. Sukhorukov, and L. C. Botten, “Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and stationary inflection points,” Phys. Rev. A85, 033804 (2012). [CrossRef]
  18. A. A. Sukhorukov, C. J. Handmer, C. M. de Sterke, and M. J. Steel, “Slow light with flat or offset band edges in few-mode fiber with two gratings,” Opt. Express15, 17954 (2007). [CrossRef] [PubMed]
  19. A. A. Sukhorukov, A. V. Lavrinenko, D. N. Chigrin, D. E. Pelinovsky, and Y. S. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B25, C65–C74 (2008). [CrossRef]
  20. P. Blown, C. Fisher, F. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Phot. Nano. Fund. Appl. In Press (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (703 KB)      QuickTime
» Media 2: AVI (1021 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited