OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27403–27410

Enhancement of a nano cavity lifetime by induced slow light and nonlinear dispersions

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27403-27410 (2012)
http://dx.doi.org/10.1364/OE.20.027403


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We start from a 2D photonic crystal nanocavity with moderate Q-factor and dynamically increase it by two order of magnitude by the joint action of coherent population oscillations and nonlinear refractive index.

© 2012 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 11, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Citation
P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, "Enhancement of a nano cavity lifetime by induced slow light and nonlinear dispersions," Opt. Express 20, 27403-27410 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27403


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003). [CrossRef]
  2. V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part ii: applications,” IEEE J. Sel. Top. Quantum Electron.12, 15–32 (2006). [CrossRef]
  3. A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, “Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-q photonic crystal resonators,” Phys. Rev. Lett.96, 093901 (2006). [CrossRef] [PubMed]
  4. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83, 2739–2741 (2003). [CrossRef]
  5. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high q ingaasp photonic crystal,” Opt. Express16, 19382–19387 (2008). [CrossRef]
  6. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010). [CrossRef] [PubMed]
  7. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803 (2012). [CrossRef]
  8. A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, and J. A. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 143904 (2006). [CrossRef] [PubMed]
  9. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel –a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express17, 6230–6238 (2009). [CrossRef] [PubMed]
  10. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21, 3052–3061 (2003). [CrossRef]
  11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-q photonic-crystal nanocavity,” Nat. Photonics1, 49–52 (2007). [CrossRef]
  12. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature Phys.3, 406–410 (2007). [CrossRef]
  13. Y. Dumeige, “Stopping and manipulating light using a short array of active microresonators,” Europhys. Lett.86, 14003 (2009). [CrossRef]
  14. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett.102, 083601 (2009). [CrossRef] [PubMed]
  15. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011). [CrossRef]
  16. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003). [CrossRef]
  17. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004). [CrossRef]
  18. E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lemaitre, and P. Senellart, “High-q whispering-gallery modes in gaas/alox microdisks,” Appl. Phys. Lett.86, 021103 (2005). [CrossRef]
  19. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett.90, 051108 (2007). [CrossRef]
  20. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003). [CrossRef]
  21. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Opt. Express15, 17206–17213 (2007). [CrossRef] [PubMed]
  22. J. Lu and J. Vuckovic, “Inverse design of nanophotonic structures using complementary convex optimization,” Opt. Express18, 3793–3804 (2010). [CrossRef] [PubMed]
  23. C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005). [CrossRef]
  24. G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56, 2385–2389 (1997). [CrossRef]
  25. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett.23, 295–297 (1998). [CrossRef]
  26. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett.25, 1732–1734 (2000). [CrossRef]
  27. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003). [CrossRef] [PubMed]
  28. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003). [CrossRef] [PubMed]
  29. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95, 143601 (2005). [CrossRef] [PubMed]
  30. P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett.95, 253601 (2005). [CrossRef] [PubMed]
  31. X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express13, 7899–7904 (2005). [CrossRef] [PubMed]
  32. N. Laurand, S. Calvez, M. D. Dawson, and A. E. Kelly, “Slow-light in a vertical-cavity semiconductor optical amplifier,” Opt. Express14, 6858–6863 (2006). [CrossRef] [PubMed]
  33. A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett.105, 223902 (2010). [CrossRef]
  34. Y. Dumeige, A. M. Yacomotti, P. Grinberg, K. Bencheikh, E. Le Cren, and J. A. Levenson, “Microcavity-quality-factor enhancement using nonlinear effects close to the bistability threshold and coherent population oscillations,” Phys. Rev. A85, 063824 (2012). [CrossRef]
  35. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in gaas,” Phys. Rev. Lett.57, 2446–2449 (1986). [CrossRef] [PubMed]
  36. P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett.109, 113903 (2012). [CrossRef] [PubMed]
  37. V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, and Y. D. Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett.96, 091103 (2010). [CrossRef]
  38. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18, 8367–8382 (2010). [CrossRef] [PubMed]
  39. M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E71, 026602 (2005). [CrossRef]
  40. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24, 411–423 (1981). [CrossRef]
  41. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” App. Phys. Lett.88, 231107 (2006). [CrossRef]
  42. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  43. E. Kapon, Semiconductor Laser I: Fundamentals (Academic Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited