OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 27441–27446

Photon-pair generation in arrays of cubic nonlinear waveguides

Alexander S. Solntsev, Andrey A. Sukhorukov, Dragomir N. Neshev, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 27441-27446 (2012)
http://dx.doi.org/10.1364/OE.20.027441


View Full Text Article

Enhanced HTML    Acrobat PDF (2141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study photon-pair generation in arrays of cubic nonlinear waveguides through spontaneous four-wave mixing. We analyze numerically the quantum statistics of photon pairs at the array output as a function of waveguide dispersion and pump beam power. We show flexible spatial quantum state control such as pump-power-controlled transition between bunching and anti-bunching correlations due to nonlinear self-focusing.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.0270) Quantum optics : Quantum optics
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Four-Wave Mixing in Waveguides and Fibers

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 19, 2012
Manuscript Accepted: October 20, 2012
Published: November 19, 2012

Virtual Issues
Nonlinear Photonics (2012) Optics Express

Citation
Alexander S. Solntsev, Andrey A. Sukhorukov, Dragomir N. Neshev, and Yuri S. Kivshar, "Photon-pair generation in arrays of cubic nonlinear waveguides," Opt. Express 20, 27441-27446 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics3, 346–350 (2009). [CrossRef]
  2. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science325, 1221–1221 (2009). [CrossRef] [PubMed]
  3. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010). [CrossRef]
  4. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science329, 1500–1503 (2010). [CrossRef] [PubMed]
  5. A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. S. Kivshar, “Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides,” Phys. Rev. Lett.108, 023601 (2012). [CrossRef] [PubMed]
  6. A. Rai and D. G. Angelakis, “Dynamics of nonclassical light in integrated nonlinear waveguide arrays and generation of robust continuous-variable entanglement,” Phys. Rev. A85, 052330 (2012). [CrossRef]
  7. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006). [CrossRef] [PubMed]
  8. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. ichi Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108 (2007). [CrossRef]
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003). [CrossRef] [PubMed]
  10. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012). [CrossRef]
  11. M. Grafe, A. S. Solntsev, R. Keil, A. A. Sukhorukov, M. Heinrich, A. Tunnermann, S. Nolte, A. Szameit, and Y. S. Kivshar, “Biphoton generation in quadratic waveguide arrays: A classical optical simulation,” Sci. Rep.2, 562 (2012). [CrossRef] [PubMed]
  12. J. C. F. Matthews, K. Poulios, J. D. A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wrhoff, M. G. Thompson, and J. L. O’Brien, “Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions,” http://arxiv.org/abs/1106.1166 (2011).
  13. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Optical solitons in a silicon waveguide,” Opt. Express15, 7682–7688 (2007). [CrossRef] [PubMed]
  14. A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A82, 041802 (2010). [CrossRef]
  15. C. J. Benton and D. V. Skryabin, “Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires,” Opt. Express17, 5879–5884 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (717 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited