OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27222–27229

A holographic projection system with an electrically tuning and continuously adjustable optical zoom

Hung-Chun Lin, Neil Collings, Ming-Syuan Chen, and Yi-Hsin Lin  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27222-27229 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A holographic projection system with optical zoom is demonstrated. By using a combination of a LC lens and an encoded Fresnel lens on the LCoS panel, we can control zoom in a holographic projector. The magnification can be electrically adjusted by tuning the focal length of the combination of the two lenses. The zoom ratio of the holographic projection system can reach 3.7:1 with continuous zoom function. The optical zoom function can decrease the complexity of the holographic projection system.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: September 14, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 12, 2012
Published: November 19, 2012

Hung-Chun Lin, Neil Collings, Ming-Syuan Chen, and Yi-Hsin Lin, "A holographic projection system with an electrically tuning and continuously adjustable optical zoom," Opt. Express 20, 27222-27229 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt.47(26), 4793–4803 (2008). [CrossRef] [PubMed]
  2. E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011). [CrossRef]
  3. E. Buckley, “Holographic projector using one lens,” Opt. Lett.35(20), 3399–3401 (2010). [CrossRef] [PubMed]
  4. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett.36(16), 3018–3020 (2011). [CrossRef] [PubMed]
  5. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express17(23), 20840–20846 (2009). [CrossRef] [PubMed]
  6. B. Marx, “Holographic optics - Miniature laser projector could open new markets,” Laser Focus World42, 40 (2006).
  7. T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” in Proc. Int. Disp. Workshop, (Nagoya, Japan, 2011), PRJ3.
  8. M. Kawamura, M. Ye, and S. Sato, “Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes,” Opt. Express16(14), 10059–10065 (2008). [CrossRef] [PubMed]
  9. M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am.70(2), 150–159 (1980). [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (New York: McGraw-Hill, 1996).
  11. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt.10(3), 035302 (2008). [CrossRef]
  12. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002). [CrossRef]
  13. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express19(5), 4714–4721 (2011). [CrossRef] [PubMed]
  14. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002). [CrossRef]
  15. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express4(9), 344–352 (1999). [CrossRef] [PubMed]
  16. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002). [CrossRef]
  17. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008). [CrossRef] [PubMed]
  18. H. C. Lin and Y. H. Lin, “An electrically tuning focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98(8), 083503 (2011). [CrossRef]
  19. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012). [CrossRef] [PubMed]
  20. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons Ltd. 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited